|

Autonomous visual navigation in an unmanned aerial vehicle onboard system

Authors: Komarov A.O., Skvortsova M.A., Oreshkova O.V.
Published in issue: #6(11)/2017
DOI: 10.18698/2541-8009-2017-6-110


Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture

Keywords: optoelectronic systems, unmanned aerial vehicle, semi-empirical simulator bench, target environment, simulator
Published: 06.06.2017

The article deals with verifying efficiency of autonomous visual navigation systems for unmanned aerial vehicles in a ground-based environment. We present a contemporary classification of unmanned aerial vehicles and their possible uses. We consider the structure and principle of operation of a semi-empirical simulator bench for testing unmanned aerial vehicle control systems. We describe a target environment simulator for testing optoelectronic equipment of the navigation system. We come to the conclusion that it is feasible to use this bench during initial stages of testing unmanned aerial vehicle control algorithms.


References

[1] Tserna I. The unmanned aerial vehicles in international trade and their regulation. Aktual’nye problemy ekonomiki i prava [Actual Problems of Economics and Law], 2016, vol. 10, no. 3, pp. 92–100.

[2] Gogolev A.A. Kompleks sredstv modelirovaniya mikrobespilotnykh letatel’nykh apparatov [Simulation tools system for unmanned aircraft]. Available at: http://www.aviationunion.ru/Files/Nom_1_Gogolev_P_Zapiska.pdf (accessed 20 March 2017).

[3] Blazhevich S.V., Vintaev V.N., Ushakova N.N. Avtomaticheskoe vydelenie i soprovozhdenie psevdotochechnykh mertsayushchikh ob’’ektov v real’nom vremeni — model’ fonotselevoy obstanovki, algoritm raboty bortovogo protsessora i mekhanicheskie resheniya po protsessoram [Automatic directing and tracking of pseudo-point scintillating objects in real time – target environment model, onboard processor operation algorithm and mechanical processor solutions]. Available at: http://dok.opredelim.com/docs/index-29849.html (accessed 20 March 2017).

[4] Byudzhetnoe finansirovanie bespilotnikov v SShA [Unmanned aircraft budget financing in USA]. Available at: http://uasreview.ru/dgr01.html (accessed 20 March 2017).

[5] Podchinit’ tekhnologii. Rossiya delaet stavku na avtonomnye avto i drony [To conquer technologies. Russia is counting on autonomous cars and drones]. Available at: https://lenta.ru/articles/2016/09/13/slavarobotam (accessed 20 March 2017).

[6] SMI: Rossiya k 2020 godu smozhet sozdat’ bespilotniki ne khuzhe amerikanskikh [Mass media: in 2020 Russia will be able to create unmanned aircraft not worse than American]. Available at: http://www.vz.ru/news/2014/6/23/692400.html (accessed 20 March 2017).

[7] Stepanov D.N. Techniques of feature points matching in the problem of UAV’s visual navigation. Vestnik YuRGU. Seriya: vychislitel’naya matematika i informatika [Bulletin of the South Ural State University. Ser. Computational Mathematics and Software Engineering], 2015, vol. 4, no. 4, pp. 32–47.

[8] Osnovy 3D matematiki [Principles of 3D mechanics]. Available at: https://mirgames.ru/topics/45 (accessed 20.03.2017).