|

Comparative analysis of the forces acting on the absorbing element of the control and protection system in a viscous incompressible fluid flow, depending on the geometry of the rod tip and the diameter of the guide channel

Authors: Ismanskiy M.N.
Published in issue: #8(49)/2020
DOI: 10.18698/2541-8009-2020-8-631


Category: Power, Metallurgic and Chemical Engineering | Chapter: Nuclear power plant

Keywords: nuclear reactor, pressurized water power reactor, control and protection system, absorbing element, hydrodynamics, hydrodynamic force, Star-CCM+ software package
Published: 03.09.2020

A qualitative analysis of the hydrodynamic resistance forces acting on the absorbing element (PEL) of the control and protection system of the WWER-1000 series reactor has been carried out. The calculations were carried out using the STAR-CCM+ computational fluid dynamics software. The distributions of pressures on the surfaces of the simulated bodies for absorber rod tips of various geometry are obtained. The analysis showed that the resistance forces acting on the body depend not only on its shape, but also on the size of the gap between the inner surface of the body and the outer surface of the channel. The data obtained can be used to substantiate the possibility of using a hydraulic damping device in WWER-1000 reactors.


References

[1] Adamov E.O., ed. Mashinostroenie yadernoy tekhniki. T. 4-25. Kn. 1 [Mechanical engineering in nuclear industry. Vol. 4-25. P. 1]. Moscow, Mashinostroenie Publ., 2005 (in Russ.).

[2] Emel’yanov I.Ya., Mikhan V.I., Solonin V.I. Konstruirovanie yadernykh reaktorov [Nuclear reactor design]. Moscow, Energoizdat Publ., 1982 (in Russ.).

[3] Budov V.M., Farafonov V.A. Konstruirovanie osnovnogo oborudovaniya AES [Designing main equipment for atomic power stations]. Moscow, Energoatomizdat Publ., 1985 (in Russ.).

[4] Kolpakov G.N., Selivanikova O.V. Konstruktsii tvelov, kanalov i aktivnykh zon energeticheskikh reaktorov [Construction of fuel pins, channels and active zones of energetic reactors]. Tomsk, Izd-vo TPU Publ., 2009 (in Russ.).

[5] Chizhiumov S.D. Osnovy gidrodinamiki [Fundamentals of hydrodynamics]. Komsomol’sk-na-Amure, KnAGTU Publ., 2007 (in Russ.).

[6] Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid mechanics]. Moscow, Nauka Publ., 1987 (in Russ.).

[7] Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti [Numerical methods for solving heat transfer and fluid dynamic problems]. Moscow, Energoatomizdat Publ., 1984 (in Russ.).

[8] STAR-CCM+ UserGuide 7.06. CD-adapco Group, 2012.

[9] Ionaytis R.R. Interaction between liquid and CPS rod. Atomnaya energiya, 1965, vol. 18, no. 4, pp. 422–425 (in Russ.).

[10] Pogosov A.Yu. Tekhnicheskie sredstva upravleniya yadernym reaktorom s vodoy pod davleniem dlya AES [Technical equipment for managing pressurized water reactor for atomic power station]. Odessa, Nauka i tekhnika Publ., 2012 (in Russ.).