|

Analysis of hydrogen embrittlement and hydride destruction of core components of nuclear power plants

Authors: Bobkov G.O.
Published in issue: #7(48)/2020
DOI: 10.18698/2541-8009-2020-7-629


Category: Power, Metallurgic and Chemical Engineering | Chapter: Nuclear power plant

Keywords: hydrogen embrittlement, hydride destruction, degradation mechanism, delayed hydride cracking, fuel element, nuclear reactor, nuclear power plant, zirconium alloy, fuel element cladding
Published: 03.09.2020

The data are analyzed on the causes of hydrogen embrittlement and hydride destruction of zirconium products in the core of nuclear power plants presented in the special literature. The mechanisms of degradation and destruction of hydrogenated parts made of zirconium alloys are considered. Regularities of delayed hydride cracking of zirconium products and ways of its possible prevention are presented. The article presents a model of reorientation of hydrides in cladding of fuel elements made of zirconium alloys E110 and E635, which are used in the fuel elements of the active zones of nuclear icebreakers and floating power units. Some features are outlined of the method of hydrogenation of zirconium fuel cladding from a solid hydrogen-containing phase.


References

[1] Edsinger K. Review of fuel degradation in BWRs. Proc. Int. Topical Meeting on Light Water Reactor Fuel Performance. American Nuclear Society, 2000, pp. 523–539.

[2] Markelov V.A., Kotov P.V., Zheltkovskaya T.N. Temperature dependence of delayed development velocity of Zr-2,5% Nb alloy. Materialovedenie [Material Science], 2000, no. 1, pp. 52–59 (in Russ.).

[3] Ivanova S.V. [Delayed hydride cracking of zirconium canal pipes – a factor, defining their working efficiency]. Sb. dok. 4-y mezhotraslevoy konf. po reaktornomu materialovedeniyu [Proc. 4th Intersectorial Conf. on Reactor Material Science]. Dimitrovgrad, NIIAR Publ., 1996, pp. 61–70 (in Russ.).

[4] Kalin B.A., ed. Fizicheskoe materialovedenie. T. 6. Konstruktsionnye materialy yadernoy tekhniki [Physical material science. Vol. 6. Construction materials of nuclear technique]. Moscow, MIFI Publ., 2012 (in Russ.).

[5] Novikov V.V., Karpyuk L.A., Gavrilov B.M. Metodika izmereniy koeffitsienta orientatsii gidridov v podgotovlennykh metodom “sukhogo” gidrirovaniya obraztsov trub i listov iz splavov tsirkoniya metodom tsifrovoy obrabotki izobrazheniy. MVI 533.788. [Measuring technique of hydride orientation coefficient in samples of pipes and sheets, prepared by “dry” hydrogenation method from zirconium alloys by digital image processing method. 533.788 measurement procedure]. 2011 (in Russ.).

[6] Nikulin S.A., Markelov V.A., Fateev B.M., et al. Tsirkoniy v atomnoy promyshlennosti [Zirconium in nuclear industry]. Moscow, TsNIIatominform Publ., 1989 (in Russ.).

[7] Kulakov G.V., Vatulin A.V., Konovalov Yu.V., et al. Analysis of the stress-strain state effect of the zirconiumbased alloys claddings on the orientation of hydrides. VANT. Ser. Materialovedenie i novye materialy [VANT. Ser. Material science and new materials], 2014, no. 1(76), pp. 39–48 (in Russ.).

[8] Kulakov G.V., Vatulin A.V., Konovalov Y.V., et.al. Distribution of hydrides as a function of the stress-strain state. TopFuel, 2013, vol. 1, pp. 65–71 (in Russ.).

[9] Kulakov G.V., Vatulin A.V., Ershov S.A., et al. development of fuel rods for floating power units and low-power atomic power stations. VANT. Ser. Materialovedenie i novye materialy [VANT. Ser. Material science and new materials], 2012, no. 1(72), pp. 14–25 (in Russ.).

[10] Min S.L., Kim M.S., Kim K.T. Cooling rate- and hydrogen content-dependent hydride reorientation and mechanical property degradation of Zr-Nb alloy claddings. J. Nucl. Mater., 2013, vol. 441, no. 1–3, pp. 306–314. DOI: https://doi.org/10.1016/j.jnucmat.2013.06.006

[11] Beskorovaynyy N.M., Kalin B.A., Platonov P.A., et al. Konstruktsionnye materialy yadernykh reaktorov [Construction materials of nuclear reactors]. Moscow, Energoatomizdat Publ., 1995 (in Russ.).

[12] Markelov V.A. Delayed hydride cracking of zirconium alloys: conditions of appearance and basic regularities. Deformatsiya i razrushenie materialov [Deformation and Fracture of Materials], 2010, no. 1, pp. 31–37 (in Russ.).