|

The influence of the geometry and material of the fuel rod array WWER-1000 spacer grid mesh

Authors: Kovaleva V.A.
Published in issue: #1(18)/2018
DOI: 10.18698/2541-8009-2018-1-226


Category: Power, Metallurgic and Chemical Engineering | Chapter: Machines and Devices, Processes of Refrigeration and Cryogenic Engineering, Air Conditioning

Keywords: spacer grid, fuel-element jacket, contact force, fuel rod array, radiation increase, radiation-induced creep, initial tension, bulge
Published: 20.12.2017

The conditions for the nuclear fuel elements interaction with the spacer grid are one of the key factors determining the thermo-mechanical behavior of the fuel rod array during operation. When in service, due to creeping and the radiation increase of the constructional materials, the change of the elastic tension in the pairs “fuel-element jacket — spacer grid mesh” takes place, resulting in changing the conditions of their interaction and subsequently in the stress-strain behavior of the fuel rod array. By using the software package AnsysMechanical v 17.0 we have analyzed the influence of the following factors on the initial contact forces and save time of these forces: the magnitude of the initial tension, the bulge length and the material of the mesh. It is proved that the increase of the initial tension brings about the time increment of the elastic interaction, the use of the alloy with the lower speed of the radiation-induced creep causes the essential increase of the elastic interaction duration, and the bulge length change has a significant impact on the time of the elastic interaction in the pair “fuel-element jacket — spacer grid mesh”.


References

[1] Piminov V.A. Mokhov V.A. Berkovich V.Ya. Shchekin I.G. Konkurentosposobnost’ tekhnologii VVER. 9 nauch.-tekh. konf. “Obespechenie bezopasnosti AES s VVER”. Podol’sk. May 19–22. 2015 (in Russ.). Available at: http://www.gidropress.podolsk.ru/files/proceedings/mntk2015/documents/mntk2015-112.ppt

[2] Rezepov V.K., Denisov V.P., Kirilyuk N.A., Dragunov Yu.G., Ryzhov S.B. Reaktory VVER-1000 dlya atomnykh elektrostantsiy [WWER-1000 for nuclear power plants]. Moscow, Akademkniga Publ., 2004. 333 p.

[3] Ryzhov S.B., Mokhov V.A., Vasil’chenko I.N. Opyt razrabotki i rezul’taty ekspluatatsii TVS-2 i TVS-2M. Mat. IX Ross. konf. po reaktornomu materialovedeniyu. NIIAR, Dimitrovgrad. Sept. 14–18. 2009 (in Russ.).

[4] Shmelev V.D., Dragunov Yu.G., Denisov V.P., Vasil’chenko I.V. Aktivnye zony VVER dlya atomnykh elektrostantsiy [Core of Water-Water Energetic Reactor for nuclear plants]. Moscow, Akademkniga Publ., 2004. 220 p.

[5] Satin A.A., Emshanov V.G. Utochnennyy algoritm rascheta podzhatiya teplovydelyayushchikh sborok. Nauch.-tekh. konf. molodykh spetsialistov po yadernym energeticheskim ustanovkam. OKB “Gidropress”. Podol’sk. March 16–17. 2011 (in Russ.). Available at: http://www.gidropress.podolsk.ru/files/proceedings/kms2011/documents/kms2011-030.pdf (accessed 01.09.2017)

[6] ANSYS Mechanical User’s Guide. Release 17.0. ANSYS, Inc.2016, 1832 p.

[7] Basov K.A. ANSYS. Spravochnik pol’zovatelya [ANSYS User’s guide]. Moscow, DMK Press, 2014. 639 p.

[8] Kaplun A. B., Morozov E. M., Shamraeva M. A. ANSYS v rukakh inzhenera. Prakticheskoe rukovodstvo [ANSYS in the hands of the engineer. A practical guide]. Moscow, Librokom Publ., 2016. 270 p.

[9] Satin A.A., Puzanov D.N. Analiz i obobshchenie dannykh po svoystvam tsirkonievykh splavov, primenyayushchikhsya v kachestve konstruktsionnykh materialov. Nauch.-tekh. konf. molodykh spetsialistov po yadernym energeticheskim ustanovkam. OKB Gidropress. Podol’sk, March 16–17. 2011 (in Russ.).

[10] Satin A.A., Vasil’chenko I.N., Kushmanov S.A., Puzanov D.N. Rezul’taty issledovaniya vliyaniya skorosti radiatsionnoy polzuchesti tsirkonievykh splavov na termomekhanicheskoe povedenie TVS i prochnost’ ee elementov. X Ross. konf. po reaktornomu materialovedeniyu. Sb. dokladov. Dimitrovgrad, OAO GNTs NIIAR, 2013, pp. 335–347 (in Russ.).