|

The dynamics of the rotary vane pumps starting from the asynchronous motor with the ball-bearings

Authors: Tkachuk V.V., Protopopov A.A., Yakovich S.M.
Published in issue: #7(24)/2018
DOI: 10.18698/2541-8009-2018-7-346


Category: Power, Metallurgic and Chemical Engineering | Chapter: Hydraulic Machines and Hydropneumatic units

Keywords: pump, overheat, mathematical model, electric motor, the starting dynamics, temperature, current force, winding
Published: 30.07.2018

The paper considers the mathematical model describing the dynamics of the electric motor starting in the pumping unit. We point out the main factors allowing to determine the overheat temperature of the electric motor, justify their interrelationship and calculate the parameters of the pump. In most cases the principal cause of the electric motors failure is overheat of the rotor winding and the stator. The winding temperature, in its turn, is determined by the current force required to generate the target value of torque on the motor shaft, and the power of motor directly depends on the parameters of the pump. According to this data we can conclude that relatively small increase of the insulator temperature has an essential impact on the durability of the electric motor.


References

[1] Cherkasskiy V.M. Nasosy, ventilyatory, kompressory [Pumps, ventilators, compressors]. Moscow, Energoatomizdat publ., 1984, 416 p.

[2] Borovin G.K., Protopopov A.A. Calculation of the optimum axial clearance for a semi-open impeller centrifugal little spending pump in thermal control system of the spacecraft. Preprinty IPM im. M.V. Keldysha [Keldysh Institute PREPRINTS], 2013, no. 86, pp. 1–16.

[3] Kukolevskiy I.I., Podvidz L.G. Sbornik zadach po mashinostroitel’noy gidravlike [Problem book on mechanical-engineering hydraulics]. Moscow, Bauman Press, 2002, 448 p.

[4] Lomakin A.A. Tsentrobezhnye i osevye nasosy [Impeller and propeller pumps]. Moscow, Mashinostroenie publ., 1966, 354 p.

[5] Mikhaylov A.K., Malyushchenko V.V. Lopastnye nasosy. Teoriya, raschet i konstruirovanie [Semirotary pumps. Theory, calculation and engineering]. Moscow, Mashinostroenie publ., 1977, 288 p.

[6] Lomakin V.O., Petrov A.I., Kuleshova M.S. Investigation of two-phase flow in axial-centrifugal impeller by hydrodynamic modeling methods. Mashinostroenie i komp’yuternye tekhnologii [Mechanical Engineering and Computer Science], 2014, no. 9. Available at: http://technomag.bmstu.ru/doc/725724.html.

[7] Lomakin V.O., Artemov A.V., Petrov A.I. Determining the impact of basic geometric parameters drain pump NM 10000-210 on its performance. Mashinostroenie i komp’yuternye tekhnologii [Mechanical Engineering and Computer Science], 2012, no. 8. Available at: http://old.technomag.edu.ru/doc/445666.html.

[8] Martynov I.O. Elektrotekhnika [Electric engineering]. Moscow, Knorus publ., 2017, 304 p.

[9] Trofimova T.I. Kurs fiziki [Physics course]. Moscow, Akademiya publ., 2006, 560 p.

[10] Petrov A.I., Martynov N.D., Pokrovskiy P.A., Pashchenko V.I., Ustyuzhanin P.Yu., Korolev P.V., Artemov A.V. The experience of designing test bench for testing large centrifugal pumps. Mashinostroenie i komp’yuternye tekhnologii [Mechanical Engineering and Computer Science], 2010, no. 11. Available at: http://technomag.bmstu.ru/doc/163848.html.