|

Comparing the ways of increasing the pump efficiency in the nonoptimal operating modes

Authors: Beyzman A.M.
Published in issue: #4(21)/2018
DOI: 10.18698/2541-8009-2018-4-297


Category: Power, Metallurgic and Chemical Engineering | Chapter: Hydraulic Machines and Hydropneumatic units

Keywords: rotary vane pump, impeller wheel, removable rotor, vaned diffuser, efficiency, upgrading, computational fluid dynamics, wetted part optimization
Published: 23.04.2018

The article considers and compares the main ways of increasing the efficiency of the pump working at slow circulating rate. In the first case the pump impellor is replaced by the impellor designed for the slower circulating rate. In the second case, apart from the impellor replacement, the vaned diffuser is added into the pump configuration. We show the way of modelling the diffuser by means of pseudorandom numbers generation method (Sobol Method). The article estimates the economic benefits of the considered upgrading ways. The obtained results show the efficiency of replacing the pump rotor in order to increase its efficiency for operating at slow circulating rate.


References

[1] Petrov A.I., Troshin G.A. Modification method for flow channel of oil export pumps of MN-type. Inzhenernyy vestnik [Engineering Bulletin], 2014, no. 11. Available at: http://engsi.ru/doc/744967.html.

[2] Artemov A.V., Petrov A.I. Modern trends of developing test bench constructions for impeller pump. Inzhenernyy vestnik [Engineering Bulletin], 2012, no. 11. Available at: http://engsi.ru/doc/500480.html.

[3] Petrov A.I. Systems of the heat balance maintenance in modern test benches for centrifugal pumps. Mashiny i ustanovki: proektirovanie, razrabotka i ekspluatatsiya 2015, no. 5. Available at: http://maplants.elpub.ru/jour/article/view/24.

[4] Petrov A.I., Aruvelli S.V. Modern development trends for pumps for liquid-cooling system of onboard and ground radio-electronic equipment. Inzhenernyy vestnik [Engineering Bulletin], 2015, no. 11. Available at: http://ainjournal.ru/doc/820059.html.

[5] Gus’kov A.M., Lomakin V.O., Banin E.P., Kuleshova M.S. Minimization of hemolysis and improvement of the hydrodynamic efficiency of a circulatory support pump by optimizing the pump flowpath. Meditsinskaya tekhnika, 2017, no. 4(304), pp. 1–4. (Eng. version: Biomedical Engineering, 2017, vol. 51, no. 4, pp. 229–233.)

[6] Gus’kov A.M., Lomakin V.O., Banin E.P., Kuleshova M.S. Assessment of hemolysis in a ventricular assist axial flow blood pump. Meditsinskaya tekhnika, 2016, no. 4, pp. 12–15. (Eng. version: Biomedical Engineering, 2016, vol. 50, no. 4, pp. 233–236.)

[7] Cheremushkin V.A., Lomakin V.O. Influence of velocity curves unevenness on the centrifugal pump head. Mashiny i ustanovki: proektirovanie, razrabotka i ekspluatatsiya [Machines and Plants: Design and Exploiting], 2017, no. 1. Available at: http://maplants.elpub.ru/jour/article/view/54.

[8] Lomakin V.O., Bibik O.Yu. The influence of empirical rates (values) in the Releya-Plesett’s model on the cavitation calculated characteristics of the centrifugal pump. Gidravlika, 2017, no. 3. Available at: http://hydrojournal.ru/item/53-vliyanie-empiricheskikh-koeffitsientov-v-modeli-releya-plesetta-na-raschetnye-kavitatsionnye-kharakteristiki-tsentrobezhnogo-nasosa.

[9] Lomakin V.O., Kukushkin P.A., Krylov V.I. Modernization of auxiliary cooling circuit of a magnetic coupling. Territoriya Neftegaz [Oil And Gas Territory], 2017, no. 7-8, pp. 84–91.

[10] Petrov A.I. Method of continuous definition of impeller pump characteristics at fluctuating temperature and hydraulic fluid viscosity in process of test in low-pressure chamber. Inzhenernyy vestnik [Engineering Bulletin], 2016, no. 10. Available at: http://engsi.ru/doc/850931.html.

[11] Lomakin V.O., Kuleshova M.S., Chaburko P.S., Baulin M.N. Complex wet end part optimization of hermetic pump with LP-TAU method. Nasosy. Turbiny. Sistemy [Pumps. Turbines. Systems], 2016, no. 1, pp. 55–61.

[12] Aleksenskiy V.A., Zharkovskiy A.A., Pugachev P.V. Research of the flow structure and forecasting the characteristics of section centrifugal pump of low rapidity. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia of Samara Scientific Center of the RAS], 2011, t. 13, no. 1(2), pp. 407–410.

[13] Petrov A.I., Isaev N.Yu. Hydrodynamic modelling of centrifugal pump in the field of negative feeds. Gidravlika, 2017, no. 3. Available at: http://hydrojournal.ru/item/60-gidrodinamicheskoe-modelirovanie-raboty-tsentrobezhnogo-nasosa-v-zone-otritsatelnykh-podach.

[14] Petrov A.I., Isaev N.Y Study of the work of a vane-type pump in the area of adverse feeds by methods of hydrodynamic modeling. Nauchnoe obozrenie: teoriya i praktika [Science Review], 2017, no. 13, pp. 74–78.

[15] Aleksenskiy V.A., Zharkovskiy A.A., Pershakov N.G. Modernization of console-monoblock centrifugal pumps with the use of CFD methods. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia of Samara Scientific Center of the RAS], 2012, vol. 14, no. 1(2), pp. 328–331.

[16] Petrov A.I., Valiev T.Z. Calculation of the process of starting a centrifugal pump using methods of computational fluid dynamics. Gidravlika, 2017, no. 4. Available at: http://hydrojournal.ru/item/59-raschet-protsessa-puska-tsentrobezhnogo-nasosa-metodami-gidrodinamicheskogo-modelirovaniya.

[17] Lomakin V.O., Cheremushkin V.A. Impact of impeller blade shape on impeller pump head. Inzhenernyy vestnik [Engineering Bulletin], 2016, no. 1. Available at: http://ainjournal.ru/doc/832881.html.

[18] Lomakin V.O., Kalmykov P. V. A methodology of investigation of the influence of coatings on piping friction. Gidravlika, 2017, no. 3. Available at: http://hydrojournal.ru/item/61-metodika-issledovaniya-vliyaniya-pokrytij-truboprovodov-na-poteri-davleniya.

[19] Kozlov S.N., Petrov A.I. Raschet i proektirovanie otvodyashchikh ustroystv tsentrobezhnykh nasosov. Ch. 2 [Design and calculation of impeller pump pay-off. Vol. 2]. Moscow, Bauman Press, 2007, 44 p.