|

Overview of electro-optical modulators in quantum optical integrated circuits

Authors: Zheltikov V.A., Pasechnikova D.V., Hydyrova S.
Published in issue: #5(70)/2022
DOI: 10.18698/2541-8009-2022-5-798


Category: Physics | Chapter: Physics and technology of nanostructures, nuclear and molecular

Keywords: quantum optical integrated circuit, photonic qubit, modulator, electro-optical effect, phase plate, Mach-Zehnder interferometer, directional coupler, polarizer
Published: 24.06.2022

Methods of information coding in a photonic quantum computer by modulation of photon characteristics are described. The elements of quantum optical integrated circuits (QOIС) based on electro-optic effects, which allow changing intensity, polarization and phase of a light wave, are considered in detail. Classification of these elements according to the modulation type, their design, fabrication materials and electro-optical effects underlying the operation principle of modulators are described. The elements with the best characteristics and the simplest implementation in the QOIС are defined. Difficulties that might be encountered in the practical implementation of these elements are identified.


References

[1] Yunusov R. Chto nado znat’ o kvantovykh vychisleniyakh [What do you need to know about quantum computing]. trends.rbc.ru: website (in Russ.). URL: https://trends.rbc.ru/trends/industry/605aff4d9a79473f1b5733b1 (accessed: 15.05.2022).

[2] Understanding quantum computing. microsoft.com: website (in Russ.). URL: https://docs.microsoft.com/en-us/azure/quantum/overview-understanding-quantum-computing (accessed: 15.05.2022).

[3] Chto takoe zakon Mura prostymi slovami [What is Moore law in broad terms]. future2day.ru: website (in Russ.). URL: https://future2day.ru/zakon-mura/ (accessed: 15.05.2022).

[4] Beterov I.I. Quantum computers based on cold atoms. Avtometriya, 2020, no. 4, pp. 3–11. DOI: http://dx.doi.org/10.15372/AUT20200401 (in Russ.). (Eng. version: Optoelectron. Instrument. Proc., 2020, vol. 56, no. 4, pp. 317–324. DOI: https://doi.org/10.3103/S8756699020040020)

[5] Besedin I.S., Fedorov G.P., Ryazanov V.V. Superconducting qubits in Russia. Kvantovaya elektronika, 2018, no. 10, pp. 880–885 (in Russ.). (Eng. version: Quantum Electron., 2018, vol. 48, no. 10, pp. 880–885. DOI: http://dx.doi.org/10.1070/QEL16795)

[6] Takesue H., Matsuda N., Kuramochi E. et al. An on-chip coupled resonator optical waveguide single-photon buffer. Nat. Commun., 2013, vol. 4, art. 2725. DOI: https://doi.org/10.1038/ncomms3725

[7] Sidorov D.I. Thermo-optic coefficients of films obtained by PECVD from oxygen and hexamethyldisilazane. Vestnik Permskogo universiteta. Ser. Fizika [Bulletin of Perm University. Physics], 2015, no. 3, pp. 69–73 (in Russ.).

[8] Palashov O.V., Starobor A.V. Yacheyka Pokkel’sa dlya moshchnogo lazernogo izlucheniya [Pockels cell for powerful laser radiation]. Patent RU 2621365. Appl. 22.0.2016, publ. 02.06.2017 (in Russ.).

[9] Basiladze G.D. Magnitoopticheskiy modulyator intensivnosti sveta [Magneto-optical light intensity modulator]. Patent RU 161388. Appl. 11.01.2016, publ. 20.04.2016 (in Russ.).

[10] Tabarin V.A., Pototskiy A.Yu., Ivanova N.A. Push-pull laser modulator on Faraday effect. Vestnik Tyumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft’, gaz, energetika [Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy], 2015, no. 2, pp. 69–74 (in Russ.).

[11] Sklyarov O. K. Volokonno-opticheskie seti i sistemy svyazi. Sankt-Petersburg, Lan’ Publ., 2018.

[12] Noykin Yu.M. Fizicheskie osnovy opticheskoy svyazi [Physical basis of optical communication]. Rostov-na-Donu, YuFU Publ., 2011 (in Russ.).

[13] Simili V., Cada M., Pistora J. Silicon slot waveguide electro-optic Kerr effect modulator. IEEE Photon. Technol. Lett., 2018, vol. 30, no. 9, pp. 873–876. DOI: https://doi.org/10.1109/LPT.2018.2823080

[14] Bottenfield C.G., Thomas V.A., Ralph S.E. Silicon photonic modulator linearity and optimization for microwave photonic links. IEEE J. Sel. Top. Quantum Electron., 2019, vol. 25, no. 5, art. 3400110. DOI: https://doi.org/10.1109/JSTQE.2019.2908784

[15] Saleh B.E.A., Teich M.C. Fundamentals of photonics. John Wiley & Sons, 2019. (Russ. ed.: Optika i fotonika. Printsipy i primeneniya. Dolgoprudnyy, Intellekt Publ., 2012.)

[16] Elektroopticheskie materialy [Electrooptical materials]. extxe.com: website (in Russ.). URL: https://extxe.com/14320/jelektroopticheskie-materialy/ (accessed: 20.05.2022).

[17] Eltes F., Mai C., Caimi D. A BaTiO3-based electro-optic Pockels modulator monolithically integrated on an advanced silicon photonics platform. J. Light. Technol., 2019, vol. 37, no. 5, pp. 1456–1462. DOI: https://doi.org/10.1109/JLT.2019.2893500

[18] Petrov V.M., Shamray A.V. SVCh integral’no-opticheskie modulyatory. Teoriya i praktika [UHF integrated optical modulator. Theory and practice]. Sankt-Petersburg, ITMO Publ., 2021 (in Russ.).

[19] Patrusheva T. N. Tekhnologii izgotovleniya komponentov oksidnykh solnechnykh batarey [Production technology for components of oxide solar batteries]. Krasnoyarsk, SFU Publ., 2015 (in Russ.).

[20] Amin R. et. al. 0.52 V mm ITO-based Mach-Zehnder modulator in silicon photonics. APL Photonics, 2018, vol. 3, no. 12, art. 126104. DOI: https://doi.org/10.1063/1.5052635

[21] Dingel B., Madamopooulos N., Prescod A. Adaptive high linearity intensity modulator for advanced microwave photonic links. In: Optical communication technology. IntechOpen, 2017. DOI: https://doi.org/10.5772/intechopen.69262

[22] Vekshin M.M. Issledovanie i modelirovanie polyarizatsionnykh volnovodnykh elementov mikro- i nanofotoniki. Diss. kand. fiz.-mat. nauk [Study and modeling of polarizing wave guide elements for micro- and nanophotonics. Kand. phys.-math. sci. diss.]. Krasnodar, KGU Publ., 2019 (in Russ.).

[23] Xu P., Zheng J., Doylend J.K. et al. Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics, 2019, vol. 6, no. 2, pp. 553–557. DOI: https://doi.org/10.1021/acsphotonics.8b01628

[24] Kim J.T., Choi C.G. Graphene-based polymer waveguide polarizer. Opt. Express, 2012, vol. 20, no. 4, pp. 3556–3562. DOI: https://doi.org/10.1364/OE.20.003556

[25] Zhang S., Li Z., Xing F. Review of polarization optical devices based on graphene materials. Int. J. Mol. Sci.., 2020, vol. 21, no. 5, art. 1608. DOI: https://doi.org/10.3390/ijms21051608

[26] Eichler H., Eichler J., Lux O. Lasers. Basics, advances and applications. Springer, 2018.

[27] Makarov M.E., Barabanenkov M.Yu., Ital’yantsev A.G. Intensity modulator based on SOI strip waveguide loaded by a Bragg mirror. Elektronika i mikroelektronika SVCh, 2018, vol. 1, pp. 534–538 (in Russ.).

[28] Agrawal G.P. Applications of nonlinear fiber optics. Academic Press, 2020.

[29] Popkov A.Yu. Vliyanie elektrofizicheskikh i geometricheskikh parametrov na chastotnye kharakteristiki poloskovykh napravlennykh otvetviteley so slaboy svyaz’yu. Diss. kand. tekhn. Nauk [Impact of electrophysical and geometric parameters on frequency characteristics of stripline directional coupler with loose coupling. Kand. tech. sci. diss.]. Tomsk, TUSUR RAN Publ., 2016 (in Russ.).