|

Application of Light Raman Spectroscopy for Quality Control of Pharmaceuticals Based on Acetylsalicylic Acid

Authors: Gylka R.A. , Gritsayeva  A.V. 
Published in issue: #3(80)/2023
DOI: 10.18698/2541-8009-2023-3-878


Category: Physics | Chapter: Instrumentation and Methods of Experimental Physics

Keywords: aspirin, Raman spectrometer, spectroscopy, nondestructive technology, Raman light scattering, cross-correlation, spectrum, medications
Published: 28.04.2023

Counterfeit pharmaceutical products have become a global problem, which is fraught with risks to human health and life. In order to prevent this threat, the possibility of studying the composition of medications using the method of spectroscopy of Raman light scattering is considered. The experimental setup for the study is presented, and a series of experiments carried out on this setup is described. The correlation of the Raman spectra of various medications with the content of aspirin in relation to the pure substance is shown. Conclusions are made about the possibility of creating a device based on a light Raman spectrometer for quality control of pharmaceuticals.


References

[1] Galeev R.R. State-of-the-art approach to the organizsation of quality control for drugs that are in use in the Russian Federation. Vestnik Roszdravnadzora, 2017, no. 2, pp. 41–43. (In Russ.).

[2] Golyak I.S., Morozov A.N., Svetlichnyi S.I. et al. Identification of chemical compounds by the reflected spectra in the range of 5.3–12.8 μm using a tunable quantum cascade laser. Russ. J. Phys. Chem. B, 2019, vol. 13, no. 4, pp. 557–564. DOI: https://doi.org/10.1134/S1990793119040055

[3] Marinchenko D.M., Shablovskaya E.A. [Method of Raman scattering and its application in the pharmaceutical analysis]. Innovatsionnoe razvitie sovremennoy nauki: problemy, zakonomernosti, perspektivy. Sb. st. 3y nauch.-prakt. konf. [Innovative Development of Modern Science: Problems, Laws and Prospects. Proc. 3rd Sci.-Pract. Conf.]. Penza, Nauka i prosveshchenie Publ., 2017, pp. 264–266. (In Russ.).

[4] Sapon E.S., Lugin V.G. FTIR-spectroscopy in quantitative pharmaceutical analysis. Vestnik farmatsii, 2017, no. 1, pp. 82–92. (In Russ.).

[5] Fufurin I.L., Tabalina A.S., Morozov A.N. et al. Identification of substances from diffuse reflectance spectra of a broadband quantum cascade laser using Kramers–Kronig relations. Opt. Eng., 2020, vol. 59, no. 6, art. 061621. DOI: https://doi.org/10.1117/1.OE.59.6.061621

[6] Tikhonova V.V. Razrabotka analiticheskikh podkhodov k primeneniyu ramanovskoy spektroskopii dlya identifikatsii lekarstvennykh preparatov. Diss. kand. farm. nauk [Development of analytic approaches to Raman spectroscopy application for identification of medical products. Kand. pharm. sci. diss.]. Sankt-Petersburg, SPKhFU Publ., 2022. (In Russ.).

[7] Vasilyev N.S., Vintaykin I.B., Golyak Ig.S. et al. Recovery and analysis of Raman spectra obtained using a static Fourier transform spectrometer. Kompyuternaya optika [Computer Optics], 2017, vol. 41, no. 5, pp. 626–635. DOI: https://doi.org/10.18287/2412-6179-2017-41-5-626-635 (In Russ.).

[8] Tikhonova V.V., Saushkina A.S. [Identification of the composition of Paracetamol tablets by Raman spectroscopy]. Sovremennye dostizheniya farmatsevticheskoy nauki i praktiki. Mat. mezhd. konf. [Current Developments in Pharmaceutical Science and Practice. Proc. Int. Conf.]. Vitebsk, VGMU Publ., 2019, pp. 212–215. (In Russ.).

[9] Vintaykin I.B., Vasilyev N.S., Golyak I.S. et al. Raman spectrometer based on a static Michelson interferometer. Izvestiya RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering], 2016, no. 6, pp. 144–152. (In Russ.).

[10] Kovalenko A.A., Eliseev A.A. Spektroskopiya kombinatsionnogo rasseyaniya [Raman scattering spectrodcopy]. Moscow, Lomonosov MSU Publ., 2011. (In Russ.).

[11] Vintaykin I.B., Golyak Il.S., Golyak Ig.S. et al. The use of Raman spectroscopy for the rapid analysis of chemical compounds. Khimicheskaya fizika, 2020, vol. 39, no. 10, pp. 20–28. DOI: https://doi.org/10.31857/S0207401X20100118 (in Russ.). (Eng. version: Russ. J. Phys. Chem. B, 2020, vol. 14, no. 5, pp. 752–759. DOI: https://doi.org/10.1134/S1990793120050255)

[12] Tikhonova V.V., Saushkina A.S. [Possibilities of Raman spectroscopy for establishing the authenticity of drugs]. Innovatsii v zdorovye natsii [Innovations in the health of the nation]. Sankt-Petersburg, SPKhFU Publ., 2018, pp. 400–404. (In Russ.).

[13] Morozov A.N., Balashov A.A., Vagin V.A. et al. Fourier spectrometer registration and summation system for weak signals. Radiooptika, 2016, no. 4. URL: https://cyberleninka.ru/article/n/sistema-registratsii-i-summirovaniya-slabyh-signalov-v-furie-spektrometre (In Russ.).

[14] Balashov A.A., Golyak Il.S., Golyak Ig.S. et al. [development of dynamic fourier spectrometer for registration of Raman spectra]. Neobratimye protsessy v prirode i tekhnike. Tr. 10y Vseros. konf. Ch. 3 [Irreversible Processes in Nature and Technology. Proc. 10th Russ. Conf. P. 3]. Moscow, Bauman MSTU Publ., 2019, pp. 110–113. (In Russ.).

[15] Golyak I.S. Primenenie staticheskogo Furye-spektrometra dlya besprobootbornogo analiza khimicheskikh soedineniy. Diss. kand. fiz.-mat. nauk [Application of static Fourier spectrometer for sampling-free analysis of chemical compounds. Kand. phys.-math. sci. diss.]. Moscow, NTTs UP RAN Publ., 2015. (In Russ.).

[16] Morozov A.N., Tabalin S.E., Novgorodskaya A.V. et al. Sposob distantsionnogo besprobootbornogo obnaruzheniya i identifikatsii khimicheskikh veshchestv i obektov organicheskogo proiskhozhdeniya i ustroystvo dlya ego osushchestvleniya [Method for remote wireless detection and identification of chemical substances and organic objects and device therefore]. Patent RU 2567119. Appl. 22.07.2014, publ. 10.11.2015. (In Russ.).