|

Reconstruction of scalar-tensor theories of gravity in verified models of cosmological inflation

Authors: Sizov V.A.
Published in issue: #3(80)/2023
DOI: 10.18698/2541-8009-2023-3-875


Category: Physics | Chapter: Astrophysics

Keywords: сosmological inflation, scalar field, scalar-tensor gravity, cosmological perturbations, reconstruction of gravity, spontaneous supersymmetry breaking, cosmological models, slow-roll
Published: 27.04.2023

The paper considers the procedure for reconstructing scalar-tensor theories of gravity in models of cosmological inflation verified by observational data for inflaton potentials physically correct from the standpoint of quantum field theory. Within the framework of this approach, inflationary models were considered based on scalar field potentials obtained on the basis of models of spontaneous supersymmetry breaking on the energy scale of cosmological inflation. For these potentials, solutions of the equations of cosmological dynamics are constructed in the case of scalar-tensor modifications of Einstein's gravity and the explicit form of these modified gravity theories is determined. To determine the constraints on the parameters of these models, modern observational constraints on the values of the parameters of cosmological perturbations were used, which follow from observations of the anisotropy and polarization of the CMB.


References

[1] Fomin I.V., Chervon S.V., Morozov A.N. Gravitatsionnye volny ranney Vselennoy [Gravitational waves of the early universe]. Moscow, Bauman MSTU Publ., 2018. (In Russ.).

[2] Riess A., Filippenko A., Challis P. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J., 1998, vol. 116, no. 3, pp. 1009–1038. DOI: http://dx.doi.org/10.1086/300499

[3] Chervon S. Chiral cosmological models: dark sector fields description. Quantum Matter., 2013, vol. 2, no. 2, pp. 71–82. DOI: https://doi.org/10.1166/qm.2013.1028

[4] Barrow J., Paliathanasis A. Observational constraints on new exact inflationary scalar-field solutions. Phys. Rev. D, 2016, vol. 94, no. 8, art. 083518. DOI: https://doi.org/10.1103/PhysRevD.94.083518

[5] Saha B. Early inflation, isotropization, and late time acceleration in a Bianchi type-I universe. Phys. Part. Nuclei, 2009, vol. 40, no. 5, pp. 656–673. DOI: https://doi.org/10.1134/S1063779609050037

[6] Clifton T., Ferreira P.G., Padilla A. et al. Modified gravity and cosmology. Phys. Rep., 2012, vol. 513, no. 1-3, pp. 1–189. DOI: https://doi.org/10.1016/j.physrep.2012.01.001

[7] Aghanim N., Akrami Y., Ashdown M. et al. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys., 2020, vol. 641, art. A6. DOI: https://www.aanda.org/10.1051/0004-6361/201833910e

[8] Martin J., Ringeval C., Vennin V. Encyclopædia inflationaris. Phys. Dark. Univ., 2014, vol. 5-6, pp. 75–235. DOI: https://doi.org/10.1016/j.dark.2014.01.003

[9] Faraoni V. Cosmology in scalar-tensor gravity. Springer, 2004.

[10] Fomin I.V., Chervon S.V. Non-minimal coupling influence on the deviation from de Sitter cosmological expansion. Eur. Phys. J. C, 2018, vol. 78, no. 11, art. 918. DOI: https://doi.org/10.1140/epjc/s10052-018-6409-5

[11] Fomin I.V., Chervon S.V., Tsyganov et al. Generalized scalar–tensor theory of gravity reconstruction from physical potentials of a scalar field. Eur. Phys. J. C, 2020, vol. 80, no. 4, art. 350. DOI: https://doi.org/10.1140/epjc/s10052-020-7893-y

[12] Fomin I.V., Chervon S.V. Relic gravitational waves in cosmological models based on the modified gravity theories. J. Phys.: Conf. Ser., 2021, vol. 2081, art. 012002. DOI: http://dx.doi.org/10.1088/1742-6596/2081/1/012002

[13] Fomin I.V., Chervon S.V., Morozov A.N. et al. Relic gravitational waves in verified inflationary models based on the generalized scalar-tensor gravity. Eur. Phys. J. C, 2022, vol. 82, no. 7, art. 642. DOI: https://doi.org/10.1140/epjc/s10052-022-10601-9

[14] Albrecht A., Dimopoulos S., Fischler W. et al. New inflation in supersymmetric theories. Nucl. Phys. B, 1983, vol. 229, no. 2, pp. 528–540. DOI: https://doi.org/10.1016/0550-3213(83)90347-4

[15] Tristram M., Banday A.J., Gorski K.M. et al. Improved limits on the tensor-to-scalar ratio using BICEP and Planck data. Phys. Rev. D, 2022, vol. 105, no. 8, art. 083524. DOI: https://doi.org/10.1103/PhysRevD.105.083524