Chemical-thermal treatment of ribbed surface structures obtained by deforming cutting

Authors: Cherkovskiy Е.N.
Published in issue: #12(53)/2020
DOI: 10.18698/2541-8009-2020-12-661

Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing

Keywords: deforming cutting, vacuum carburizing, vacuum nitriding, liquid boriding, reheat quenching, low tempering, diffusion layer, multi-axis diffusion
Published: 21.12.2020

Deforming cutting is a modern method of surface plastic deformation of a material. To date, a lot of studies have been carried out on the heat treatment of parts after deforming cutting, however, the combination of this method of material surface treatment with subsequent chemical-thermal treatment has been studied to a much lesser extent. The paper presents the results of studies of steel 20H after deforming cutting and subsequent chemical-thermal and heat treatment. The results of studies are presented of ribbed surfaces structure after vacuum carburizing, vacuum nitriding and liquid boriding. The depth of saturating elements penetration into intercostal gaps during chemical-thermal treatment by various methods has been investigated.


[1] Zubkov N.N., Ovchinnikov A.I. Sposob polucheniya poverkhnostey s chereduyushchimisya vystupami i vpadinami i instrument dlya ego realizatsii [Method for intermittent land surface production and instrument for its realization]. Patent RU 2044606. Appl. 30.04.1993, publ. 27.09.1995 (in Russ.).

[2] Zubkov N.N. Repair, reconditioning and modernization based on deforming cutting method. Remont, vosstanovlenie, modernizatsiya [Repair, Reconditioning, Modernization], 2003, no. 10, pp. 7–11 (in Russ.).

[3] Zubkov N.N., Ovchinnikov A.I., Vasil’yev S.G., et al. Osnovy metoda deformiruyushchego rezaniya [Fundamentals of deforming cutting method]. Moscow, Bauman MSTU Publ., 2005 (in Russ.).

[4] Shulyak Ya.I. Peculiarities of the strain hardening of surface layers of parts by deformational cutting. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2015, no. 3, pp. 3–10. DOI: http://dx.doi.org/10.18698/0536-1044-2015-3-3-10 (in Russ.).

[5] Vasil’yev S.G., Poptsov V.V. Increasing a workpiece surface hardness by thermal effect using macrodeformation process. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2011, no. 12, pp. 37–43. DOI: http://dx.doi.org/10.18698/0536-1044-2011-12-37-43 (in Russ.).

[6] Vasil’yev S.G., Shulyak Ya.I. Change of hardness of a surface of a detail by a machining method. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2011, no. 11, pp. 77–82. DOI: http://dx.doi.org/10.18698/0536-1044-2011-11-77-82 (in Russ.).

[7] Degtyareva A.G., Simonov V.N., Bokatenko E.Yu. Effect of thermal pretreatment of 40Kh steel on structure and properties surface hardened by deformation cutting. Inzhenernyy vestnik [Engineering Bulletin], 2017, no. 6. URL: http://ainjournal.ru/doc/859951.html (in Russ.).

[8] Degtyareva A.G., Poptsov V.V., Simonov V.N., et al Formation of quenching structures in the steel 35 by deform cutting. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2014, no. 9. URL: http://engineering-science.ru/doc/725672.html (in Russ.).

[9] Kel’tsieva I.A., Vasil’yev S.G. Chemical heat treatment of modified titanium alloy surface structures. Mashiny i ustanovki: proektirovanie, razrabotka i ekspluatatsiya [Machines and Plants: Design and Exploiting], 2016, no. 4, pp. 14–24. DOI: https://doi.org/10.7463/aplts.0416.0845347 (in Russ.).

[10] Ovchinnikov A.I., Vasil’yev S.G., Khasyanov M.A., et al. Sposob uprochneniya poverkhnosti detail [Method for surface hardening]. Patent RU 2015202. Appl. 04.02.1192, publ. 30.06.1994 (in Russ.).

[11] Vasil’yev S.G., Zubkov N.N., Simonov V.N. [Hardening composite coatings with vertical placing of hardening layers]. Klyuchevye trendy v kompozitakh: nauka i tekhnologii. Sb. mat. Mezhd. nauch.-prakt. konf. [Key Trends in Composites: Science and Technologies. Proc. Int. Sci. Pract. Conf.]. Moscow, Diona Publ., 2019, pp. 119–129 (in Russ.).

[12] Goryushin V.V., Petropavlovskiy A.G., Shevchenko S.Yu., et al. Akresol: a new polymer quenchant. Metallovedenie i termicheskaya obrabotka metallov, 2008, no. 4, pp. 49–52. (in Russ.). (Eng. version: Met Sci Heat Treat., 2008, vol. 50, no. 3-4, pp. 196–199. DOI: https://doi.org/10.1007/s11041-008-9025-4)

[13] Krasulya A.A., Pomel’nikova A.S., Tsikh S.G. [Optimization of low-temperature liquid boriding regimes in order to achieve rational structures of surface layer and center of 30KhGSA steel]. Mat. XXIV Ural’skoy shkoly metallovedov-termistov [Proc. XXIV Ural School for metallographists heat treaters]. Magnitogorsk, MGTU im. G.I. Nosova Publ., 2018, pp. 133–135 (in Russ.).

[14] Vintaykin B.E., Kamynin A.V., Smirnov A.E., et al. Specific features of forming surface phases under chemical heat treatment of iron-base alloys. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2018, no. 2, pp. 73–81. DOI: http://dx.doi.org/10.18698/1812-3368-2018-2-73-81 (in Russ.).