|

Optimization of the modes of growing details from aluminum powder by the selective laser melting method

Authors: Binkov I.I., Povalyuhin D.V.
Published in issue: #5(34)/2019
DOI: 10.18698/2541-8009-2019-5-478


Category: Mechanical Engineering and Machine Science | Chapter: Technology and Equipment of Mechanical and Physical Processing

Keywords: additive technologies, porosity, microhardness, aluminum powder, selective laser melting, research method, growing modes, optimization
Published: 30.05.2019

Currently, additive technologies have good prospects for use. Improving the quality of parts obtained by the selective laser melting method is currently an important area of activity in the field of additive technologies. In particular, such an indicator as porosity has a significant impact on the strength characteristics of the final part. This article reviews the method of estimating the porosity values of samples grown from aluminum powder, an alternative to the methods used at the department MT-12. Conclusions are drawn about the effect of the input specific energy on the formation of pores, their number and microhardness in various zones of the samples.


References

[1] Eleftherios L., Fox P., Christopher J.S. Selective laser melting of aluminium components. J. Mater. Process. Technol., 2011, vol. 211, no. 2, pp. 275–284. DOI: 10.1016/j.jmatprotec.2010.09.019 URL: https://www.sciencedirect.com/science/article/pii/S0924013610003018

[2] EOS Aluminium AlSi10Mg. Material data sheet – FlexLine. eos.info: website. URL: https://cdn0.scrvt.com/eos/f3f4bf485d78f2dd/b010c05abe97/AlSi10Mg-090-M400_Flexline_Material_data_sheet_09-15_en.pdf (accessed: 12.04.2019).

[3] Konrad B., Sven U., Thomas F., et al. New developments of laser processing aluminum alloys via additive manufacturing technique. Phys. Procedia, 2011, vol. 12, p. A, pp. 393–401. DOI: 10.1016/j.phpro.2011.03.050 URL: https://www.sciencedirect.com/science/article/pii/S1875389211001295

[4] Yagi S., Kuni D. Studies on effective thermal conductivities in packed beds. AIChE J., 1957, vol. 3, no. 3, pp. 373–381. DOI: 10.1002/aic.690030317 URL: https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690030317

[5] Gusarov A.V., Kruth J.–P. Modelling of radiation transfer in metallic powders at laser treatment. Int. J. Heat Mass Transf., 2005, vol. 48, no. 16, pp. 3423–3434. DOI: 10.1016/j.ijheatmasstransfer.2005.01.044 URL: https://www.sciencedirect.com/science/article/pii/S0017931005002012

[6] Buchbinder D., Schleifenbaum H., Heidrich S., et al. High power selective laser melting (HP SLM) of aluminum parts. Phys. Procedia, 2011, vol. 12, p. A, pp. 271–278. DOI: 10.1016/j.phpro.2011.03.035 URL: https://www.sciencedirect.com/science/article/pii/S1875389211001143

[7] Grigor’yants A.G., Shiganov I.N., Misyurov A.I. Tekhnologicheskie protsessy lazernoy obrabotki [Technological processes of laser processing]. Moscow, Bauman MSTU Publ., 2006 (in Russ.).

[8] Li Y., Gu D. Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater. Des., 2014, vol. 63, pp. 856–867. DOI: 10.1016/j.matdes.2014.07.006 URL: https://www.sciencedirect.com/science/article/pii/S0261306914005330

[9] Rykalin N.N. Raschety teplovykh protsessov pri svarke [Heat calculations at the welding process]. Moscow, Mashgiz Publ., 1951 (in Russ.).

[10] Grigor’yants A.G., Shiganov I.N. Lazernaya svarka metallov [Laser welding of metals]. Moscow, Vysshaya shkola Publ., 1988 (in Russ.).