|

Selection of a mathematical model of the mobile robot motion and the method for determining the ground contacting area

Authors: Zuev E.S.
Published in issue: #7(36)/2019
DOI: 10.18698/2541-8009-2019-7-502


Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics, and Robotic Systems

Keywords: mobile robot, mathematical model, flotation, tracked propulsion, robotic complex, autonomous movement, adaptive controller, soil
Published: 30.07.2019

This article considers the problem of providing autonomous movement of a middle class tracked mobile robot. The analysis of the existing mathematical models of the mobile robots movement is given taking into account the ground contacting area. The paper contains a spatial model of a mobile caterpillar robot motion and a model of plane-parallel motion, which takes into account the slip of both sides’ tracks, a model of uneven rotation, and a mathematical model describing a separate rectilinear motion and rotation. The analysis is carried out for methods of determining the properties of the ground contacting area for the autonomous tracked mobile robot of a heavy class. Based on the conducted research, conclusions were drawn about the applicability of the proposed mathematical models and methods for determining the properties of the ground contacting area in practice. The authors developed stages for modeling an adaptive motion controller of a mobile robot.


References

[1] Amin N.M. Upravlenie dvizheniem gusenichnykh mobil

[2] Noskov V.P., Rubtsov V.I., Rubtsov I.V. Matematicheskie modeli dvizheniya i sistemy tekhnicheskogo zreniya mobil

[3] Zabavnikov N.A. Osnovy teorii transportnykh gusenichnykh mashin [Theory fundamentals of transport tracked vehicles]. Moscow, Mashinostroenie Publ., 1975. (in Russ.).

[4] Mashkov K.Yu., Rubtsov V.I., Rubtsov I.V. Sostav i kharakteristiki mobil

[5] Kotiev G.O., Sarach E.B. Kompleksnoe podressorivanie vysokopodvizhnykh dvukhzvennykh gusenichnykh mashin [Complex cushioning of high-mobility two-unit tracked vehicles]. Bauman MSTU Publ., 2010 (in Russ.).

[6] Bekker M.G. Introduction to terrain-vehicle systems. The University of Michigan Press, 1969. (Russ. ed.: Vvedenie v teoriyu sistem mestnost

[7] Nikitin A.O., Sergeev L.V. Teoriya tanka [Tank theory]. Moscow, Izd-vo akademii BTV Publ., 1962 (in Russ.).

[8] GOST 19912-2001. Grunty. Metody polevykh ispytaniy staticheskim i dinamicheskim zondirovaniem [State standard 19912-2001. Soils. Field test methods by static and dynamic sounding]. Moscow, Izd-vo standartov Publ., 2001 (in Russ.).

[9] Garciano L.O., Upadhyaya S.K., Jones R.A. Measurement of soil parameters useful in predicting tractive ability. J. Terramechanics, 2010, vol. 47, no. 5, pp. 295–305. DOI: 10.1016/j.jterra.2010.07.002 URL: https://www.sciencedirect.com/science/article/abs/pii/S0022489810000583

[10] Wills B. The design and development of a hydraulic bevameter. J. Terramechanics, 1964, vol. 1, no. 1, pp. 91–97. DOI: 10.1016/0022-4898(64)90125-9 URL: https://www.sciencedirect.com/science/article/abs/pii/0022489864901259

[11] Upadhyaya S.K., Wulfsohn D., Mehlschau J. An instrumented device to obtain traction related parameters. J. Terramechanics, 1993, vol. 30, no. 1, pp. 1–20. DOI: 10.1016/0022-4898(93)90027-U URL: https://www.sciencedirect.com/science/article/abs/pii/002248989390027U

[12] Nama J.S., Park Y.J., Kim K.U. Determination of rating cone index using wheel sinkage and slip. J. Terramechanics, 2010, vol. 47, no. 4, pp. 243–248. DOI: 10.1016/j.jterra.2010.02.002 URL: https://www.sciencedirect.com/science/article/abs/pii/S0022489810000054

[13] Mashkov K.Yu., Rubtsov V.I., Shtifanov N.V. Automatic system to provide the supporting trafficability of mobile robot. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2012, vyp. Spetsial

[14] Vazaev A.V., Noskov V.P., Rubtsov I.V., et al. Object detection and ground type classification with combined computer vision system. Izvestiya YuFU. Tekhnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 2016, no. 2(175), pp. 127–139 (in Russ.).