|

Designing and vertical testing of the submersible motion control system. The mathematical model of the submersible

Authors: Gostilovich S.O.
Published in issue: #2(19)/2018
DOI: 10.18698/2541-8009-2018-2-254


Category: Mechanical Engineering and Machine Science | Chapter: Robots, Mechatronics, and Robotic Systems

Keywords: submersible, mathematical model, hull angle, vertical motion, linearization model, transfer function, residual buoyancy, the worst case of steadiness
Published: 01.02.2018

We have developed a mathematical model of the submersible vertical motion and constructed a structural flowchart of this model. We apply simplified and generalized approaches to describing the motion of body in the liquid medium. The linear models and loop transfer functions of the submersible motion have been obtained. The article justifies the possibility of the separate control loops synthesis by means of the hull angle and linear velocities. It describes the impact of the residual buoyancy on the submersible motion. We show the worst case of steadiness for the linear and angular speed loops, as well as the necessity of designing the trim angle control loop for different linearization points. In this research we use a frequency-response method for the motion contours analysis.


References

[1] Grumondz V.T., Polovinkin V.V., Yakovlev G.A. Teoriya dvizheniya dvusrednykh apparatov. Matematicheskie modeli i metody issledovaniya [Movement theory of two-medium apparatus. Mathematical models and research methods]. Moscow, Vuzovskaya kniga publ., 2012, 644 p.

[2] Grumondz V.T., Yakovlev G.A. Algoritmy aerogidrodinamicheskogo proektirovaniya [Algorithms of aerohydrodynamic engineering]. Moscow, MAI publ., 1994, 304 p.

[3] Kiselev L.V., Inzartsev A.V., Medvedev A.V. On some problems of dynamics and spatial motion control of unmanned underwater vehicle. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2006, no. 2, pp. 13–26.

[4] Kiselev L.V., Medvedev A.V. Research of AUV dynamic features on basis of processes typology and fuzzy control models. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2008, no. 1(5), pp. 16–23.

[5] Kiselev L.V., Medvedev A.V. Dynamics models and control algorithms of autonomous underwater robot in trajectory inspection of the physical fields anomalies. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2008, no. 1(11), pp. 24–31.

[6] Kiselev L.V., Medvedev A.V. On parametric relation of hydrodynamics and motion stability of the autonomous underwater robot. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2013, no. 1(15), pp. 17–22.

[7] Kiselev L.V., Medvedev A.V. Comparative analysis and the optimization of the autonomous underwater robots dynamic properties of different projects and configurations. Podvodnye issledovaniya i robototekhnika [Underwater Investigations and Robotics], 2012, no. 1(13), pp. 24–35.

[8] Lukomskiy Yu.A., Chugunov V.S. Sistemy upravleniya morskimi podvizhnymi ob’’ektami [Control systems of marine vehicles]. Leningrad, Sudostroenie publ., 1988, 272 p.

[9] Sobolev G.V. Upravlyaemost’ korablya i avtomatizatsiya sudovozhdeniya [Ship controllability and marine navigation automation]. Leningrad, Sudostroenie publ., 1976, 477 p.

[10] Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo upravleniya [Automatic control system theory]. Sankt-Peterburg, Professiya publ., 2007, 752 p.