|

Promising methods of interventional angiosurgery

Authors: Pukhova I.K., Sokolova D.Yu, Poludkin I.E., Bogacheva Yu.A.
Published in issue: #11(64)/2021
DOI: 10.18698/2541-8009-2021-11-749


Category: Medical sciences | Chapter: Medical equipment and devices

Keywords: interventional angiosurgery, endovascular angiosurgery, balloon angioplasty, stenting, atherectomy, radiofrequency ablation, thermal angioplasty, atherosclerosis
Published: 10.12.2021

The development of methods for the diagnosis and treatment of cardiovascular diseases associated with the formation of atherosclerotic plaques makes it possible to improve the prognosis for the duration and quality of patients’ life. Interventional (endovascular) angiosurgery is a modern developing area of minimally invasive surgery that allows the use of percutaneous access for intravascular operations. The paper describes the methods of interventional angiosurgery, shows their main advantages and disadvantages. It gives schematic representations of the main types of devices for minimally invasive vascular dilatation and their classifications according to various parameters. Conclusions are made about the main directions of development of each method.


References

[1] King M.W., Bambharoliya T., Ramakrishna H. et al. Coronary artery disease and the evolution of angioplasty devices. Springer, 2020.

[2] Ramanath V.S., Thompson C.A. Guidewires and angioplasty balloons: the primer. In: Textbook of Cardiovascular Intervention. Springer, 2014, pp. 91–98.

[3] Kayssi A., Al-Atassi T., Oreopoulos G. et al. Drug-eluting balloon angioplasty versus uncoated balloon angioplasty for peripheral arterial disease of the lower limbs. Cochrane Database Syst. Rev., 2016, vol. 8, art. CD011319. DOI: https://doi.org/10.1002/14651858.cd011319.pub2

[4] Keefe N.A., Haskal Z.J., Park A.W. et al. IR playbook. Springer, 2018.

[5] Cronenwett J., Johnston W. Rutherford’s vascular surgery. ‎Elsevier, 2014.

[6] Duerig T.W., Wholey M. A comparison of balloon- and self-expanding stents. Min. Invas. Ther. & Allied Technol., 2002, vol. 11, no. 4, pp. 173–178.

[7] Zagorulko E.Y., Teslev A.A., Flisyuk E.V. Modern coating technologies for drug eluting coronary stents (review). Drug Dev. Regist., 2017, no. 1, pp. 70–77.

[8] Mani G., Feldman M.D., Patel D. et al. Coronary stents: a materials perspective. Biomaterials, 2007, vol. 28, no. 9, pp. 1689–1710.

[9] Schmidt T., Abbott J. Coronary stents: history, design, and construction. J. Clin. Med., 2018, vol. 7, no. 6, art. 126. DOI: https://dx.doi.org/10.3390%2Fjcm7060126

[10] Kaul A., Dhalla P.S., Bapatla A. et al. Current treatment modalities for calcified coronary artery disease: a review article comparing novel intravascular lithotripsy and traditional rotational atherectomy. Cureus, 2020, vol. 12, no. 10, art. e10922. DOI: https://doi.org/10.7759/cureus.10922

[11] Sakakura K., Ito Y., Shibata Y. et al. Clinical expert consensus document on rotational atherectomy from the Japanese association of cardiovascular intervention and therapeutics. Cardiovasc. Interv. Ther., 2020, vol. 36, no. 1, pp. 1–18. DOI: https://doi.org/10.1007/s12928-020-00715-w

[12] Katsanos K., Spiliopoulos S., Reppas L. et al. Debulking atherectomy in the peripheral arteries: is there a role and what is the evidence? Cardiovasc. Intervent. Radiol., 2017, vol. 40, no. 7, pp. 964–977. DOI: https://doi.org/10.1007/s00270-017-1649-6

[13] Orlandi G., Parenti G., Bertolucci A. et al. Silent cerebral microembolism in asymptoma­tic and symptomatic carotid artery stenoses of low and high degree. Eur. Neurol., 1997, vol. 38, no. 1, pp. 39–43. DOI: https://doi.org/10.1159/issn.0014-3022

[14] Lee G., Ikeda R.M., Theis J.H. et al. Acute and chronic complications of laser angioplasty: vascular wall damage and formation of aneurysms in the atherosclerotic rabbit. Am. J. Cardiol., 1984, vol. 53, no. 2, pp. 290–293. DOI: https://doi.org/10.1016/0002-9149(84)90441-7

[15] Stanek F. Laser angioplasty of peripheral arteries: basic principles, current clinical studies, and future directions. Diagnostic Interv. Radiol., 2019, vol. 25, no. 5, pp. 392–397. DOI: https://doi.org/10.5152/dir.2019.18515

[16] Bhatta N., Isaacson K., Bhatta K.M. et al. Comparative study of different laser systems. Fertil. Steril., 1994, vol. 61, no. 4, pp. 581–591. DOI: https://doi.org/10.1016/s0015-0282(16)56629-1

[17] Rawlins J. Din J.N., Talwar S. et al. Coronary intervention with the excimer laser: review of the technology and outcome data. Interv. Cardiol., 2016, vol. 11, no. 1, pp. 27–32. DOI: https://doi.org/10.15420/icr.2016:2:2

[18] Belikov A.V., Skripnik A.V. Lazernye biomeditsinskie tekhnologii (chast’ 1) [Laser biomedical technologies (part 1)]. Sankt-Petersburg, SPbGU ITMO Publ., 2008 (in Russ.).

[19] Zhao S., Zou J., Zhang A. et al. A new RF heating strategy for thermal treatment of atherosclerosis. IEEE Trans. Biomed. Eng., 2019, vol. 66, no. 9, pp. 2663–2670. DOI: https://doi.org/10.1109/TBME.2019.2894503

[20] Lu D.Y., Leon M.B., Bowman R.L. Electrical thermal angioplasty: Catheter design features, in vitro tissue ablation studies and in vivo experimental findings. Am. J. Cardiol., 1987, vol. 60, no. 13, pp. 1117–1122. DOI: https://doi.org/10.1016/0002-9149(87)90364-X

[21] Smith D.L., Walinsky P., Martinez-Hernandez A. et al. Microwave thermal balloon angioplasty in the normal rabbit. Am. Heart J., 1992, vol. 123, no. 6, pp. 1516–1521. DOI: https://doi.org/10.1016/0002-8703(92)90803-4