|

Study of the radiative characteristics of the deuterium lamp DDS-30

Authors: Zolotarev P.V.
Published in issue: #7(36)/2019
DOI: 10.18698/2541-8009-2019-7-500


Category: Mechanics | Chapter: Mechanics of Deformable Solid Body

Keywords: deuterium plasma, DDS-30 lamp, MDR-206 monochromator, recombination radiation, anomalous continuum, graphical method for determining temperature, determination of plasma density, spectral emissivity
Published: 30.07.2019

In spectral studies, a DDS-30 lamp with a deuterium-neon filling is often used as a source, which gives a continuous emission spectrum in the violet and ultraviolet range. Using the MDR-206 monochromator, plasma emission spectra were recorded and it was shown that in the wavelength range 300...450 nm a high intensity of continuous radiation is observed. A study of the radiation characteristics of the lamp was carried out, the plasma parameters have been experimentally determined, and the excess of the power registered in this region over the calculated radiation associated with recombination radiation has been shown. The observed anomaly may be associated, apparently, with the transfer of excitation from neon atoms to deuterium molecules.


References

[1] Lampa deyterievaya spektral’naya DDS-30 (ld2-d) [DDS-30 (ld2-d) deuterium spectral lamp]. medrk.ru: website (in Russ.). URL: http://www.medrk.ru/shop/lampy-medicinskie/lampy-prochie/id-10060 (accessed: 17.05.2019).

[2] Gradov V.M., Zimin A.M., Krivitskiy S.E., et al. Automated spectrometric complex for diagnostics of magnetron discharge plasma. VANT. Ser. Termoyadernyy sintez [Problems of Atomic Science and Technology. Ser. Thermonuclear Fusion], 2009, no. 1, pp. 64–71 (in Russ.).

[3] Sizikov V.S. Obratnye prikladnye zadachi i MatLab [Inverse applied problems and MatLab]. Sankt-Petesburg, Lan’ Publ., 2011 (in Russ.).

[4] MatLab. Rukovodstvo dlya nachinayushchikh. Rossiyskoe Khemometricheskoe Obshchestvo. URL: http://rcs.chemometrics.ru/Tutorials/matlab.htm (accessed: 17.05.2019).

[5] Kolesnikov V.N. Spektroskopicheskaya diagnostika plazmy [Spectroscopic diagnostics of plasma]. Moscow, MEPhI Publ., 2007 (in Russ.).

[6] Soloukhin R.I., ed. Optika i atomnaya fizika [Optics and atomic physics]. Novosibirsk, Nauka Publ., 1976 (in Russ.).

[7] Biberman L.M. Norman G.E. Continuous spectra of atomic gases and plasma. UFN, 1967, vol. 91, no. 2, pp. 193–215. DOI: 10.3367/UFNr.0091.196702b.0193 URL: https://ufn.ru/ru/articles/1967/2/b/ (in Russ.). (Eng. version: Sov. Phys. Usp., 1967, no. 10, pp. 52–90. DOI: 10.1070/PU1967v010n01ABEH003199 URL: https://iopscience.iop.org/article/10.1070/PU1967v010n01ABEH003199)

[8] Sobel’man I.I. Vvedenie v teoriyu atomnykh spektrov [Introduction into atomic spectrum theory]. Moscow, Fizmatgiz Publ., 1963 (in Russ.).

[9] Lavrov B.P., Melnikov A.S. UV continuum emission and diagnostics of hydrogen-containing non-equilibrium plasmas. Phys. Rev. E, 1999, vol. 59, no. 3, pp. 3526–3543. DOI: 10.1103/PhysRevE.59.3526 URL: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.59.3526

[10] Dremin M.M., Kapralov V.G., Kislov A.Ya., et al. Effect of noble gas injection on discharge disruption in T-10 tokamak. VANT. Ser. Termoyadernyy sintez [Problems of Atomic Science and Technology. Ser. Thermonuclear Fusion], 2012, no. 4, pp. 58–70 (in Russ.).