The problems of obtaining lightly doped epitaxial AlGaAs layers by the method of liquid phase epitaxy

Authors: Shumakin N.I.
Published in issue: #2(31)/2019
DOI: 10.18698/2541-8009-2019-2-445

Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Solid-state electronics, radioelectronic components, micro - and nanoelectronics

Keywords: heterostructure, liquid phase epitaxy, lightly doped layer, background impurities, doping, compensation, gallium arsenide, rare-earth elements
Published: 20.02.2019

Lightly doped AlGaAs layers allow to create epitaxial structures for high-performance devices for various purposes, which have special properties. A number of problems with obtaining a low concentration of intrinsic carriers in such layers arises during forming lightly doped layers in various applications. One of the main problems in the formation of such layers is the presence of background impurities in the initial components. The article considers the possibility of obtaining a lightly doped AlGaAs layer by the method of liquid phase epitaxy of doping the solution-melt with rare-earth elements and the method of charge carrier compensation. The advantages of using each of the methods for a particular type of instrument are described.


[1] Salli I.V., Fal’kevich E.S. Proizvodstvo poluprovodnikovogo kremniya [Production of semiconductor silicon]. Moscow, Metallurgiya Publ., 1970 (in Russ.).

[2] Nashel’skiy A.Ya. Tekhnologiya poluprovodnikovykh materialov [Semiconductor materials technology]. Moscow, Metallurgiya Publ., 1987 (in Russ.).

[3] Fal’kevich E.S., Pul’ner E.O., Chervonyy I.F., et al. Tekhnologiya poluprovodnikovogo kremniya [Semiconductor silicon technology]. Moscow, Metallurgiya Publ., 1996 (in Russ.).

[4] Kaniewska M. Deep levels in Yb–Al co-doped GaAs grown by liquid phase epitaxy. Mater. Sci. Semicond. Process., 2006, vol. 9, no. 1-3, pp. 366–370. DOI: 10.1016/j.mssp.2006.01.018 URL: https://www.sciencedirect.com/science/article/pii/S1369800106000308

[5] Shumakin N.I., Strel’chenko S.S. Specifics of obtaining lightly-doped aluminium gallium arsenide layers for photodetectors. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2017, no. 6. DOI: 10.18698/2308-6033-2017-6-1628 URL: http://engjournal.ru/catalog/msm/nnm/1628.html (in Russ.).

[6] Boltaks B.I. Diffuziya i tochechnye defekty v poluprovodnikakh [Diffusion and point defects in semiconductors]. Leningrad, Nauka Publ., 1972 (in Russ.).

[7] Alferov Zh.I. Double heterostructures: conception and application in physics, electronics and technology. UFN, 2002, vol. 172, no. 9, pp. 1072–1086. DOI: 10.3367/UFNr.0172.200209e.1068 URL: https://ufn.ru/ru/articles/2002/9/e/ (in Russ.).

[8] Taylor P.D. Thyristor design and realization. Wiley, 1987. (Russ. ed.: Raschet i proektirovanie tiristorov. Moscow, Atomizdat Publ., 1990.)

[9] Charykov N.A. Fizicheskie yavleniya v p-n perekhodakh [Physical phenomena in p-n junctions]. Moscow, MEI Publ., 1994 (in Russ.).

[10] Muller R.S., Kamins T.I. Device electronics for integrated circuits. Wiley, 2002.(Russ. ed.: Elementy integral’nykh skhem. Moscow, Mir Publ., 2004.)

[11] Bakhrushin V.E. Poluchenie i fizicheskie svoystva slabolegirovannykh sloev mnogosloynykh kompozitsiy [Realization and physical properties of lightly doped layers in multilayer compositions]. Zaporozh’ye, ZIGMU Publ., 2001 (in Russ.).