|

Study of a laser gyroscope using the Allan variation method

Authors: Bolotnov A.S., Fomin I.I.
Published in issue: #5(58)/2021
DOI: 10.18698/2541-8009-2021-5-702


Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Laser and opto-electronic systems

Keywords: navigation systems, gyroscope, Allan variation, dispersion, least squares method, ring laser, mobile complexes, aircraft
Published: 17.06.2021

The paper describes the advantages of using the Allan variation method in studying the noise components of the laser gyroscopes output signals in strapdown inertial navigation systems. The graphs are presented for the accuracy characteristics of the GL-2D ring laser gyroscope using the RWCalk program. The results are presented of calculating the noise components values of the ring laser gyroscope output signal using the Allan variation algorithm. The sources of noise components arising during measurements of the angular velocity using a photodetector mounted on the body of the laser gyroscope are determined. The accuracy class of the strapdown navigation system, into which this gyroscope will be installed, has been determined.


References

[1] Bolotnov A.S., Chepurnov I.A., Potapov V.A. Technological aspects of navigation systems of military ground mobile complexes development. Vestnik Yaroslavskogo vysshego voennogo uchilishcha PVO, 2020, no. 1, pp. 22–232 (in Russ.).

[2] Bolotnov A.S. The use of a laser gyroscope in strapdown inertial systems. Politekhnicheskiy molodezhnyy zhurnal [Politechnical Student Journal], 2019, no. 10. DOI: http://dx.doi.org/10.18698/2541-8009-2019-10-533 (in Russ.).

[3] Bolotnov A.S. Study of a small-sized laser gyroscope for use in underwater robotic systems. Politekhnicheskiy molodezhnyy zhurnal [Politechnical Student Journal], 2020, no. 7. DOI: http://dx.doi.org/10.18698/2541-8009-2020-7-630 (in Russ.).

[4] Bolotnov A.S., Verenikina N.M., Nazarov S.I. Investigation of a precision laser gyro for inertial navigation problems. Kontenant, 2020, vol. 19, no. 4, pp. 91–102 (in Russ.).

[5] Sharova M.A., Dyadin S.S. Allan variance in dynamically tuned inertial-unit gyro error analysis. Vestnik Kontserna VKO “Almaz-Antey” [Journal of “Almaz – Antey” Air and Space Defence Corporation], 2019, no. 3, pp. 69–77 (in Russ.).

[6] Aviev A.A., Enin V.N., Saneev I.V. Experimental research of the dithering ring laser gyro triad by Allan variations method. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2016, no. 6. URL: http://engineering-science.ru/en/doc/842332.html (in Russ.).

[7] Stepanov O.A., Chelpanov I.B., Motorin A.V. [On accuracy of sensor bias estimation and its relationship with Allan variance]. Mat. XXII SPb. mezhd. konf. po integrirovannym navigatsionnym sistemam [Proc. XXII Sankt-Petersburg Int. Conf. on Integrated Positioning Systems]. Sankt-Petersburg, TsNII “Elektropribor” Publ., 2015, pp. 485–491 (in Russ.).

[8] Kutovoy D.A., Sitnikov P.V. [Same practical issues of using Allan variation at study on strapdown inertial unit]. Navigatsiya i upravlenie dvizheniem. Mat. XV konf. molodykh uchenykh [Navigation and Motion Control. Proc. XV Conf. of Young Scientists]. Sankt-Petersburg, TsNII “Elektropribor” Publ., 2013, pp. 246–252 (in Russ.).

[9] IEEE Std 647-2006. IEEE standard specification format guide and test procedure for single-axis laser gyros. IEEE, 2006.

[10] GOST RV 52339-2005. Sistemy besplatformennye inertsial’no-navigatsionnye na lazernykh giroskopakh [State standard GOST RV 52339-2005. Strapdown inertial navigationsystems on laser gyroscope]. Moscow, Standartinform, Publ. 2005 (in Russ.).