|

Study of a small-sized laser gyroscope for use in underwater robotic systems

Authors: Bolotnov A.S.
Published in issue: #7(48)/2020
DOI: 10.18698/2541-8009-2020-7-630


Category: Instrument Engineering, Metrology, Information-Measuring Instruments and Systems | Chapter: Laser and opto-electronic systems

Keywords: robotic complex, ring laser, laser gyroscope, navigation, orientation, autonomous unmanned underwater vehicle, strapdown inertial navigation system, testing
Published: 03.09.2020

The paper considers the prospects of using robotic systems (RS) and the role of inertial navigation systems in their control. The advantage of laser gyroscopes is shown in comparison with gyroscopes of other types in the construction of inertial systems. The requirements are analyzed for the errors of laser gyroscopes as sensors of primary information of strapdown inertial navigation systems (SINS) of the 1–3rd accuracy class. An algorithm is proposed for the selection of small-sized laser gyroscopes for use in the SINS of the control loop of an underwater RS. The approach was tested in the course of experimental studies of a number of GL-18 devices. The test results confirmed the possibility of using a small-sized serial laser gyroscope KL-18 in the development of SINS of the 3rd accuracy class for the control loop of an underwater RS.


References

[1] Ivanov M.S., Aganesov A.V., Krylov A.A., et al. Bespilotnye letatel’nye apparaty [Unmanned aircraft]. Voronezh, Nauchnaya kniga Publ., 2015 (in Russ.).

[2] Chirov D.S., Novak K.V. Development prospects of special-purpose robotic complexes. Voprosy bezopasnosti, 2018, no. 2, pp. 50–59. DOI: https://doi.org/10.25136/2409-7543.2018.2.22737 (in Russ.).

[3] Tselitskiy S.V. Autonomous unmanned submarines and hazard of underwater armaments drive. Puti k miru i bezopasnosti, 2018, no. 2(55), pp. 132–136. DOI: https://doi.org/10.20542/2307-1494-2018-2-132-136 (in Russ.).

[4] Seregin V.V., Kukuliev P.M. Lazernye girometry i ikh primenenie [Laser gyrometers and their application]. Moscow, Mashinostroenie Publ., 1990 (in Russ.).

[5] Lazernye giroskopy GL-1D, GL-2D, GL-18 [GL-1D, GL-2D, GL-18 laser gyroscopes]. electrooptika.ru: website (in Russ.). URL: http://www.electrooptika.ru/index.php/produktsiya/bazovye-elementy (accessed: 15.05.2020).

[6] Anuchin O.N., Emel’yantsev G.N. Integrated navigation and orientation systems for marine moving objects. Sankt-Petersburg, TsNII Elektropribor Publ., 2003 (in Russ.).

[7] GOST RV 52339-2005. Sistemy besplatformennye inertsial’no-navigatsionnye na lazernykh giroskopakh [State standard RV 52339-2005. Strapdown inertial navigation systems on laser hyroscopes]. Moscow, Standartinform Publ., 2005 (in Russ.).

[8] Bolotnov A.S. The use of a laser gyroscope in strapdown inertial systems. Politekhnicheskiy molodezhnyy zhurnal [Politechnical student journal], 2019, no. 10(39). URL: http://dx.doi.org/10.18698/2541-8009-2019-10-533 (in Russ.).

[9] Bychkov S.I., Luk’yanov D.P., Bakalyar A.I. Lazernyy giroskop [Laser hyroscope]. Moscow, Sovetskoe radio Publ., 1975 (in Russ.).