|

Method for improving the accuracy of aircraft navigation system using the Kalman filter

Authors: Hu Yuhui, Ma Deng
Published in issue: #9(38)/2019
DOI: 10.18698/2541-8009-2019-9-529


Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing, Statistics

Keywords: Kalman filter, aircraft, Gaussian white noise, inertial navigation system, GPS, error of navigation systems, forecast, error compensation
Published: 03.10.2019

This article presents algorithms of the classical Kalman filter compensating errors in navigation systems of aircraft. The use of the Kalman filter to compensate errors in measuring systems in the autonomous mode is described. The analysis of the characteristics of the output signals of the inertial navigation system (INS) and satellite navigation system (SNS). A signal processing scheme for a hybrid system is presented, an algorithm is developed for synthesizing signals from INS and SNS with a Kalman filter, which implements error compensation for both systems. The results of mathematical modeling of the errors of the INS and Kalman filter are presented, and the results of estimation are compared with theoretical values. It is proved that the accuracy of the navigation system can be improved using the Kalman filter.


References

[1] Selezneva M.S. Razrabotka algoritmov kompleksirovaniya navigatsionnykh sistem letatel’nykh apparatov. Diss. kand. tekh. nauk [Development of algorithms for integration of aircraft navigation systems. Kand. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 2017 (in Russ.).

[2] Selezneva M.S., Ogloblina Yu.S. [Developing self-organizing model with high self-organizing degree]. Nauchnyy vzglyad. Tr. mezhd. nauch.-prakt. konf. [Scientific view. Proc. Int. Sci.-Pract. Conf.]. Moscow, MGOU Publ., 2015, pp. 250–253 (in Russ.).

[3] Astrom K.J., McAvoy T.J. Intelligent control: an overview and evaluation. Van Nostrand Reinhold, 1992.

[4] Shashurin V.D., Selezneva M.S., Neusypin K.A. The formation technology of the navigation complex action acceptor through the use of dynamic system synthesis. Avtomatizatsiya. Sovremennye tekhnologii, 2018, vol. 72, no. 3, pp. 121–126 (in Russ.).

[5] Neusypin K.A., Selezneva M.S. [Development of navigational complex with intellectual component]. Budushchee mashinostroeniya Rossii. Sb. dok. 8y Vseros. konf. molodykh uchenykh i spetsialistov [The future of Russian Mechanical Engineering. Proc. 8th Russ. Conf. of Young Scientists and Specialists]. Moscow, Bauman MSTU Publ., 2015, pp. 1115–1118 (in Russ.).

[6] Russel S.J., Norvig P. Artificial intelligence: a modern approach, Prentice-Hall, 1995.

[7] Fam S.F., Neusypin K.A., Selezneva M.S. [Developing compact self-organization algorithm]. Nauka segodnya: Problemy i puti resheniya. Mat. mezhd. nauch.-prakt. konf. [Science today: Problems and methods of their solving. Proc. Int. Sci.-Pract. Conf.]. Vologda, Marker Publ., 2016, pp. 64–65 (in Russ.).

[8] Fam S.F., Selezneva M.S. [Aircraft control system using system synthesis conception]. Teoreticheskie i prakticheskie issledovaniya XXI veka. Tr. II mezhd. nauch.-prakt. konf. [Theoretical and practical research of XXI cent.]. Moscow, MGOU Publ., 2016, pp. 104–106 (in Russ.).

[9] Shakhtarin B.I., Shen K., Neusypin K.A. Modification of the nonlinear Kalman filter in a correction scheme of aircraft navigation systems. J. Commun. Technol. Electron., 2016, vol. 61, no. 11, pp. 1252–1258. DOI: 10.1134/S1064226916110115 URL: https://link.springer.com/article/10.1134%2FS1064226916110115

[10] Shen K., Selezneva M.S., Neusypin K.A. Development of an algorithm for correction of an inertial navigation system in off-line mode. Meas. Tech., 2018, vol. 60, no. 10, pp. 991–997. DOI: 10.1007/s11018-018-1306-8 URL: https://link.springer.com/article/10.1007/s11018-018-1306-8

[11] Proletarskiy A.V., Selezneva M.S. [Aircraft measurement system with intelligent component]. Sovremennye aspekty fundamental’nykh nauk. Tr. 2-go mezhd. simp. [Modern aspects of fundamental sciences. Proc. 2nd Int. Symp.]. Moscow, MGOU Publ., 2015, pp. 196–199 (in Russ.).

[12] Selezneva M.S., Neusypin K.A. Development of a measurement complex with intelligent component. Meas. Tech., 2016, vol. 59, no. 9, pp. 916–922. DOI: 10.1007/s11018-016-1067-1 URL: https://link.springer.com/article/10.1007/s11018-016-1067-1

[13] Simandl Moscow, Kralovec J., Ticavsky P. Filtering, predictive, and smoothing Cramér-Rao bounds for discrete-time nonlinear dynamic systems. Automatica, 2001, vol. 37, no. 11, pp. 1703–1716. DOI: 10.1016/S0005-1098(01)00136-4 URL: https://www.sciencedirect.com/science/article/pii/S0005109801001364