|

Accounting of MEMS accelerometer errors when simulating it

Authors: Maksyushin G.V.
Published in issue: #2(31)/2019
DOI: 10.18698/2541-8009-2019-2-437


Category: Informatics, Computer Engineering and Control | Chapter: System Analysis, Control, and Information Processing, Statistics

Keywords: measurement accuracy, MEMS accelerometer, accelerometer errors, internal noise, flicker noise, temperature errors, zero drift, simulation in MATLAB Simulink
Published: 08.02.2019

The main accelerometer parameters and characteristics, MEMS accelerometer errors and their causes are considered. The main error types, their features and causes of occurrence are listed. Using the basic accelerometer parameters for a range of ±1g, a MEMS accelerometer was simulated in the MATLAB Simulink software package without considering measurement errors. This model of the MEMS accelerometer has been modified to take into account the temperature measurement errors and the input signal noise components, including flicker noise, to assess the real operation of the MEMS accelerometer. According to the obtained simulation results, conclusions were made about the effect of various errors on the actual operation of MEMS accelerometers in simulation.


References

[1] Kazakevich A. Analog Devices accelerometers – implementation and application. Komponenty i Tekhnologii [Components & Technologies], 2007, no. 70, pp. 46–50 (in Russ.).

[2] Kravchenko N.S, Revinskaya O.G. Metody obrabotki rezul’tatov izmereniy i otsenki pogreshnostey v uchebnom laboratornom praktikume [Optimization methods for measured data and accuracy assessment in educational laboratory course]. Tomsk, TPU Publ., 2011 (in Russ.).

[3] Zhukov V.K. Teoriya pogreshnostey tekhnicheskikh izmereniy [Error theory of technical measurements]. Tomsk, TPU Publ., 2009 (in Russ.).

[4] Dao Van Ba. Dinamicheskiy metod issledovaniya pogreshnostey triady mikromekhanicheskikh akselerometrov. Avtoref. diss. kand. tekh. nauk [Dynamic methods for error research in triad of micromechanical accelerators. Abs. kand. tech. sci. diss.]. Sankt-Petersburg, SPbGETU LETI Publ., 2015 (in Russ.).

[5] Razrabotka algoritma dlya issledovaniya pogreshnostey MEMS-akselerometra [Developing algorithm for research on MEMS accelerometer error]. Studwood.ru: website (in Russ.). URL: https://studwood.ru/570993/informatika/teoreticheskaya_chast (accessed: 10.03.2018).

[6] Flikker-shum (1/f-shum, izbytochnyy shum) [Flicker-noise (1/f noise, excess noise)]. chronos.msu.ru: website (in Russ.). URL: http://www.chronos.msu.ru/old/TERMS/parkhomov_flikker.htm (accessed: 10.09.2018).

[7] Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsial’nykh navigatsionnykh system [Fundamentals of strap down inertial navigation systems]. Sankt-Petersburg, Kontsern TsNII Elektropribor Publ., 2009 (in Russ.).

[8] Volkov V.L. Motivation of the requirements to parameters for accelerometer a micromechanical. Trudy NGTU im R.E. Alekseeva, 2011, no. 2(87), pp. 288–295 (in Russ.).

[9] Volkov V.L., Khrisanova M.V. Provision steady-state and dynamic accuracy of the micro electromechanic sensor of angular velocity. Trudy NGTU im. R.E. Alekseeva, 2013, no. 2(99), pp. 329–338 (in Russ.).

[10] Pavlov D.V., Lukin K.G., Petrov M.N. Development of imitating model of the MEMS accelerometer using Simulink environment. Vestnik NovGU im. Yaroslava Mudrogo [Vestnik NovSU. Issue: Engineering Sciences], 2016, no. 4(95), pp. 28–33 (in Russ.).