|

A parametric study of the thermal state of a cone with a supersonic airflow

Authors: Miroshnichenko S.A.
Published in issue: #5(46)/2020
DOI: 10.18698/2541-8009-2020-5-608


Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

Keywords: cone, airflow, supersonic airflow, mathematical model, convective heat transfer, temperature, thermal state, angle of attack
Published: 26.05.2020

The work is devoted to mathematical modeling of the thermal state of a blunt cone in a supersonic airflow conditions. A parametric study was conducted when simulating a flight at an altitude of H = 20 km at a speed equal to 4M. The thermal state of the cone is analyzed at various attack angles in the range from 0 to 10°. The distribution of characteristic heat transfer zones over the surface of the cone is investigated. Based on the simulation results, the corresponding base of calculation data is obtained. The results of the study can be used to optimize the geometric configuration and flight modes of high-speed aircraft.


References

[1] Kupryukhin A.A. Optimizatsiya teplovoy zashchity giperzvukovykh letatel’nykh apparatov putem variatsii kataliticheskikh i izluchatel’nykh svoystv materialov teplovoy zashchity. Avtoref. dis. kand. tekhn. nauk [Thermal protection optimization of hypersonic aircraft by variation of catalytic and emission properties of thermal shield materials. Kand. tech. sci. diss.]. Moscow, MAI Publ., 2010 (in Russ.).

[2] Voronetskiy A.V., Aref’yev K.Yu., Gusev A.A. RANS methods in flow problems of high speed aircraft constructions elements and aircraft engines for features analysis of convective heat fluxes numerical simulation. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2017, no. 1, pp. 98–111. DOI: http://dx.doi.org/10.18698/0236-3941-2017-1-98-111 (in Russ.).

[3] Aref’yev K.Yu., Abramov M.A., Miroshnichenko S.A., et al. Parametric study of convective heat transfer with supersonic airflow around a blunted cone. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2019, no. 6. DOI: http://dx.doi.org/10.18698/2308-6033-2019-6-1886 (in Russ.).

[4] Rubtsov N.A., Sinitsyn V.A. Unsteady radiative-convective heat transfer in a flow emitting-absorbing and scattering medium around an ablating plate. PMTF, 2004, vol. 45, no. 3, pp. 129–135 (in Russ.). (Eng. version: J. Appl. Mech. Tech. Phy., 2004, vol. 45, no. 3, pp. 415–419. DOI: https://doi.org/10.1023/B:JAMT.0000025024.86142.e3)

[5] Usadskiy D.G., Karpenko A.N., Fokin V.M. Experimental determination of heat productivity of heat-carrying fluid heater under steady-state thermal condition. Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel’nogo universiteta. Seriya: Stroitel’stvo i arkhitektura [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture], 2010, no. 19, c. 108–111 (in Russ.).

[6] ANSYS, programmnye produkty [ANSYS software]. cadfem-cis.ru: website (in Russ.). URL: https://www.cadfem-cis.ru/products/ansys/ (accessed: 25.02.2020).

[7] Bykov L.V., Nikitin P.V., Pashkov O.A. Mathematical modeling of high-speed flow around a blunt body. Trudy MAI, 2014, no. 78. URL: http://www.trudymai.ru/published.php?ID=53445&eng=N (in Russ.).

[8] Loytsyanskiy L.G. Mekhanika zhidkostey i gazov [Fluid mechanics]. Moscow, GIFML Publ., 1960 (in Russ.).

[9] Langtry R.B., Menter F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J., 2009, vol. 47, no. 12, pp. 2894–2906. DOI: https://doi.org/10.2514/1.42362

[10] Grigor’yev Yu.N., Ershov I.V. Linear stability of supersonic Couette flow of a molecular gas under the conditions of viscous stratification and excitation of the vibrational mode. Izvestiya RAN. Mekhanika zhidkosti i gaza, 2017, no. 1, pp. 11–27 (in Russ.). (Eng. version: Fluid Dyn. 2017, vol. 52, no. 1, pp. 9–24. https://doi.org/10.1134/S0015462817010021)

[11] Zubchenko A.S., ed. Marochnik staley i splavov [Guidebook of steels and alloys]. Moscow, Mashinostroenie Publ., 2003 (in Russ.).