|

Numerical modeling of the flame tube operation in the cooling system of the air-jet engine combustion chamber

Authors: Batenin I.A.
Published in issue: #8(37)/2019
DOI: 10.18698/2541-8009-2019-8-516


Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts

Keywords: ramjet engine, combustion chamber, flame tube, film cooling, mathematical modeling, fluid and gas dynamics, cooling jacket, air intake
Published: 04.09.2019

This article presents a numerical simulation of a perforated flame tube operation in a system of film cooling of a combustion chamber of an air-jet engine using liquid fuel. The influence of the air flow supplied to the flame tube and its temperature on the overall gas-dynamic flow pattern is analyzed. The fields of gas parameters distribution (velocity, pressure, temperature) for various flow regimes in the flame tube are constructed. As a result of the calculations, the nature was revealed of the distribution of the air flow supplied to the cooling film along the combustion chamber under various modes of operation of the flame tube. The results of the study can be used to optimize the design of the film cooling system of the combustion chamber of an air-jet engine.


References

[1] Kudryavtsev V.M., ed. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigateley. Kn. 2 [Fundamentals of theory and calculations of liquid rocket engines. Vol. 2]. Moscow, Vysshaya shkola Publ., 1993 (in Russ.).

[2] Dobrovol’skiy M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya [Liquid rocket engine. Engineering foundations]. Moscow, Bauman MSTU Publ., 2016 (in Russ.).

[3] Lefebvre A. Gas turbine combustion. Hemisphere, 1983. (Russ. ed.: Protsessy v kamerakh sgoraniya GTD. Moscow, Mir Publ., 1986.)

[4] Khronin D.V., ed. Konstruktsiya i proektirovanie aviatsionnykh gazoturbinnykh dvigateley [Construction and engineering of aviation gas-turbine engines]. Moscow, Mashinostroenie Publ., 1989 (in Russ.).

[5] Kopelev S.Z., Gurov S.V. Teplovoe sostoyanie elementov konstruktsii aviatsionnykh dvigateley [Thermal state of construction elements of aviation engine]. Moscow, Mashinostroenie Publ., 1978 (in Russ.).

[6] Kurziner R.I. Reaktivnye dvigateli dlya bol’shikh sverkhzvukovykh skorostey poleta [Reactive engines for high hypersonic flight speed]. Moscow, Mashinostroenie Publ., 1989 (in Russ.).

[7] Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigateley [Rocket engines theory]. Moscow, Mashinostroenie, 1989 (in Russ.).

[8] ANSYS Fluent 17.2 Theory Guide. Ansys Inc., 2016.

[9] Abramovich G.N. Prikladnaya gazovaya dinamika [Applied gas dynamics]. Moscow, Nauka Publ., 1991 (in Russ.).

[10] Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetakh slozhnykh techeniy [Turbulence modelling in complex flow calculations]. Sankt-Petersburg, Izd-vo Politekhnicheskogo instituta Publ., 2012 (in Russ.).

[11] de Feo D.M., Shaw S.T. Turbulence modeling and supersonic base flows. 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, AIAA 2007-1083. DOI: 10.2514/6.2007-1083 URL: https://arc.aiaa.org/doi/10.2514/6.2007-1083

[12] Menter F.R. Zonal two-equation k-ω turbulence models for aerodynamic flows. 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conf., 1993, AIAA 1993-2906. DOI: 10.2514/6.1993-2906 URL: https://arc.aiaa.org/doi/10.2514/6.1993-2906

[13] Kutateladze S.S., Leont’yev A.I. Teploobmen i trenie v turbulentnom pogranichnom sloe [Heat exchange and friction in turbulent boundary layer]. Moscow, Energoatomizdat Publ., 1985 (in Russ.).