|

Analysis of the level of protection of modern spacecraft from high-speed impact of space debris particles

Authors: Schetchikov O.D., Petrenko A.D.
Published in issue: #9(38)/2019
DOI: 10.18698/2541-8009-2019-9-519


Category: Aviation and Rocket-Space Engineering | Chapter: Innovation Technologies of Aerospace Engineering

Keywords: space debris, spacecraft, anti-meteoroid protection, mathematical modeling, high-speed impact, orbital module, science power module, International Space Station
Published: 10.09.2019

This article is devoted to the study of high-speed impact of space debris particles with elements of anti-meteoroid protection of modern and promising spacecraft. A procedure has been developed for calculating the processes of impact interaction of aluminum and steel space particles with elements of anti-meteoroid protection of spacecraft. Criteria are proposed for assessing the danger of exposure to aluminum and steel meteoroid particles on the internal units of the science power module (SPM) of the International Space Station (ISS). It was shown that steel particles have high destructive effect, while aluminum particles do not have such a devastating effect on the internal units of SPM.


References

[1] Zelentsov V.V. Problems of small debris. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2015, no. 4. URL: http://engineering-science.ru/doc/764904.html (in Russ.).

[2] Zelentsov V.V. Protecting spacecraft fragments from exposure to small debris. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2015, no. 6. URL: http://engineering-science.ru/doc/778339.html (in Russ.).

[3] Christiansen E.L., Rollins M. MMOD risk/external inspection needs for re-entry TPS. Space NDI Workshop, 2012. URL: https://www.nasa.gov/pdf/626427main_1-5_Rollins_Christiansen.pdf (accessed: 09.03.2019).

[4] Christiansen E. Micrometeoroid and orbital debris (MMOD) risk overview. International NASA Johnson Space Center, 2014. URL: https://www.nasa.gov/sites/default/files/files/E_Christiansen-MMODriskOverview.pdf (accessed: 05.03.2019).

[5] Romanchekov V.P., Pokrovskiy O.S., Zinechenko L.V. Double-screen shielding from debris and meteoroids influence for pressurized shell of ISS scientific and power module. Konstruktsii iz kompozitsionnykh materialov, 2014, no. 3, pp. 3–7 (in Russ.).

[6] ANSYS: website. URL: http://www.ansys.com (accessed: 02.03.2019).

[7] Volkov O.V., Gorbenko A.V. Protection of Russian modules at the international space station against technogenic particles. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia RAS SamSC], 2012, vol. 14, no. 1(2), pp. 480–482 (in Russ.).

[8] Kolpakov V.I., Vasil’yeva T.V. Modelirovanie udarnogo vzaimodeystviya vysokoskorostnykh chastits s elementami konstruktsii ekrannoy zashchity kosmicheskogo apparata [Impact interaction modelling of hypervelocity particles with construct elements of spacecraft screen protection]. Moscow, Bauman MSTU Publ., 2017 (in Russ.).

[9] Babkin A.V., Kolpakov V.I., Okhitin V.N., et al. Chislennye metody v zadachakh fiziki bystroprotekayushchikh protsessov [Numerical methods in problems of high-speed process physics]. Moscow, Bauman MSTU Publ., 2006 (in Russ.).

[10] Bakharev Yu.N., ed. Prikladnye zadachi vysoskorostnogo udara [Applied problems of high-speed impact]. Sarov, FGUP RFYaTs-VNIIEF Publ., 2011 (in Russ.).