|

A review of existing methods for reducing the impact area

Authors: Khukhrina O.I.
Published in issue: #3(44)/2020
DOI: 10.18698/2541-8009-2020-3-588


Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

Keywords: impact area, disturbing factors, decrease in the impact area, separating parts of launch vehicles, method of burning the separating parts, changing the pitch angle program of the launch vehicle, complementing the design of the separating part by controls, passive stabilization
Published: 06.04.2020

The paper provides a review of scientific papers on reducing the impact area and the systematization of currently existing methods for solving this problem. Reducing the impact area is an important and urgent task, since it will reduce the operation costs. Currently, there are many works describing how to reduce the impact area. For a better assessment of the proposed methods, the main perturbing factors affecting the dispersion ellipse area of the separating part are considered. The advantages and disadvantages of the considered methods are highlighted.


References

[1] Levantovskiy V.I. Mekhanika kosmicheskogo poleta v elementarnom izlozhenii [Space flight mechanics in elementary representation]. Moscow, Nauka Publ., 1980 (in Russ.).

[2] Postanovlenie Pravitel’stva RF ot 31.05.1995 g., № 536 “O poryadke i usloviyakh epizodicheskogo ispol’zovaniya rayonov padeniya otdelyayushchikhsya chastey rake” [RF Government Regulation of 31.05.1995 no. 536 “On order and conditions of episodic usage of drop zones for rocket separating parts”] (in Russ.).

[3] Postanovlenie Pravitel’stva RF ot 24.03.1998 g., № 350 “O vnesenii izmeneniy i dopolneniy v postanovlenie Pravitel’stva Rossiyskoy Federatsii ot 31 maya 1995 g., № 536” [RF Government Regulation of 24.03.1998 no. 350 “On amending RF Government Regulation of 31.05.1995 no. 536”] (in Russ.).

[4] Polyakov P.P. Management separating parts of carrier rockets to reduce impact area. Lesnoy vestnik [Forestry Bulletin], 2015, no. 3, pp. 90–94 (in Russ.).

[5] Kuzmak G.E. Dinamika neupravlyaemogo dvizheniya letatel’nykh apparatov pri vkhode v atmosferu [Uncontrolled motion dynamics of aircraft entering atmosphere]. Moscow, Nauka Publ., 1970 (in Russ.).

[6] Golikov A.A., Demeshkina V.V, Leutin A.P., et al. Peculiarities of unguided reentry of space transportation system parts. Doklady akademii nauk, 2010, vol. 435, no. 4, pp. 470−474 (in Russ.). (Eng. version: Dokl. Phys., 2010, vol. 55, no. 12, pp. 597–601. DOI: https://doi.org/10.1134/S1028335810120037)

[7] Filat’yev A.S., Golikov A.A., Petrokovskiy S.A. [New topology structure of dispersion area of uncontrolled objects in atmosphere]. XI Vseros. s’’ezd po fundamental’nim probl. teoret. i prikl. Mekhaniki [XI Russ. Cong. on Fundamental Problems of Theory and Practice of Applied Mechanics]. Kazan’, KFU Publ., 2015, 3911–3913 (in Russ.).

[8] Eliseykin S.A., Podrezov V.A., Poluarshinov A.M., et al. Problem issues of calculating fall areas of launch vehicle separable modules. Trudy Voenno-kosmicheskoy akademii imeni A.F. Mozhayskogo [Proceedings of the Mozhaisky Military Space Academy], 2016, no. 655, pp. 107–113 (in Russ.).

[9] Arsen’yev V.N., Bulekbaev D.A. Method for refinement of atmospheric model parameters in area forecast of carrier rocket separating parts fall. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2014, no. 1, pp. 5–10 (in Russ.).

[10] Trushlyakov V.I., Davydovich D.Yu. Developing methodology for problem of nose cones combustion at the lowering in dense atmosphere]. Dinamika sistem, mekhanizmov i mashin [Dynamics of Systems, Mechanisms and Machines], 2016, no. 1, pp. 43–48 (in Russ.).

[11] Mel’nikov V.E. Sovremennaya pirotekhnika. Moscow, Nauka Publ., 2014 (in Russ.).

[12] Zarko V.E., Korchagin M.A., Kiskin A.B., et al. Preliminary assessment of using possibility of mechanoactivated pyrotechnic compositions for composites combustion. Dinamika sistem, mekhanizmov i mashin [Dynamics of Systems, Mechanisms and Machines], 2016, no. 2, pp. 252–257 (in Russ.).

[13] Trushlyakov V.I., Lempert D.B., Monogarov K.A., et al. Sposob minimizatsii zon otchuzhdeniya dlya otdelyaemykh chastey raket-nositeley [Methods for minimization of buffer area for launcher separated parts]. Patent RU 2692207. Appl. 13.08.2018, publ. 21.06.2019 (in Russ.).

[14] Trushlyakov V.I., Monogarov K.A., Lempert D.B., et al. Sposob minimizatsii zon otchuzhdeniya otdelyaemykh chastey rakety-nositelya [Methods for minimization of buffer area for launcher separated parts]. Patent RU 2672683. Appl. 27.11.2017, publ. 19.11.2018 (in Russ.).

[15] Vladimirov A.V., Ganzen N.G., Roslov A.V., et al. Sposob minimizatsii zon otchuzhdeniya dlya otdelyaemykh chastey mnogostupenchatoy rakety-nositelya [Methods for minimization of buffer area for multistage launcher separated parts]. Patent RU 2464526. Appl. 30.03.2011, publ. 20.10.2012 (in Russ.).

[16] Arsen’yev V.N., Fadeev A.S., Kazakov R.R. On providing the launch vehicle separated elements falling into assigned ground area during the launches from the new launch pads. Trudy MAI, 2012, no. 58. URL: http://trudymai.ru/published.php?ID=33415&eng=N (in Russ.).

[17] Averkiev N.F., Bulekbaev D.A. Search method for optimal program of launcher movement to minimize jettisonable elements scattering area. Izvestiya vysshikh uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2013, no. 7, pp. 10–12 (in Russ.).

[18] Titov B.A., Rychkov S.A. Decreasing the area of fall of “Soyuz” – type carrier rocket’s used blocks with their structure deliberately divided into parts. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta, 2007, no. 1, pp. 90–97 (in Russ.).

[19] Trushlyakov V.I. Sitnikov D.V. The design procedure of the aerodynamic maneuver of the carrier rocket separating part for the fall location changing. Dinamika sistem, mekhanizmov i mashin [Dynamics of Systems, Mechanisms and Machines], 2014, no. 2, pp. 262–269 (in Russ.).

[20] Trushlyakov V.I., Kudentsov V.Yu. Launching space rockets and control of separated parts landing in target areas. Omskiy nauchnyy vestnik [Omsk Scientific Bulletin], 2011, no. 1(97), pp. 92–95 (in Russ.).

[21] RN “Falcon 9” [“Falcon-9” launcher]. aboutspacejornal.net: website (in Russ.). URL: https://aboutspacejornal.net/%D1%80%D0%BD-falcon-9/ (accessed: 07.10.2019).

[22] SpaceX povtorno ispol’zuet golovnoy obtekatel’ Falcon Heavy [SpaceX uses Falcon Heavy nose cone for the second time]. nplus1.ru: website (in Russ.). URL: https://nplus1.ru/news/2019/04/12/first-fairing-reuse (accessed: 07.10.2019).

[23] Blue origin makes historic rocket landing. blueorigin.com: website. URL: https://www.blueorigin.com/news/blue-origin-makes-historic-rocket-landing (accessed: 07.10.2019).

[24] “Baykal" startuet i vozvrashchaetsya [“Baykal starts and returns”]. aviapanorama.narod.ru: website (in Russ.). URL: http://www.aviapanorama.narod.ru/journal/2001_4/baykal.htm (accessed: 20.01.2020).

[25] Chizhukhin V.N., Mekhonoshin Yu.G. Sposob umen’sheniya rayonov padeniya otrabotannykh raketnykh blokov pervoy stupeni raketonositelya pri ikh parallel’nom soedinenii [Method for decreasing drop area of launcher separated parts of the first stage at their parallel connection]. Patent RU 2572014. Appl. 28.05.2014, publ. 27.12.2015 (in Russ.).

[26] Lutsenko A.Yu., Nazarova D.K., Slobodyanyuk D.M. Computation of aerodynamic characteristics and parameters of flow around the launch vehicle nose fairing half in the ANSYS CFX package. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2018, no. 5. DOI: http://dx.doi.org/10.18698/2308-6033-2018-5-1766 (in Russ.).