|

Numeral calculation of aerodynamic characteristics unmanned aerial vehicle

Authors: Nikanorova M.D., Zabolotskaya E.V.
Published in issue: #4(33)/2019
DOI: 10.18698/2541-8009-2019-4-464


Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

Keywords: SolidWorks, Flow Simulation, unmanned aerial vehicle, aerodynamic characteristics, numerical simulation, control system, stabilization system, reliability analysis
Published: 11.04.2019

The paper is concerned with the construction of a 3D model of an unmanned aerial vehicle in the software package of the automated design system SolidWorks. The authors carried out a numerical simulation of subsonic airflow around this model in the optional module of the SolidWorks software package - Flow Simulation. In this paper, the authors obtained the aerodynamic parameters of the unmanned aerial vehicle from the simulation results of the flow, which were then converted into static aerodynamic characteristics. The work on the analysis of reliability and determination of the possibility of further use of the obtained static aerodynamic characteristics for the formation of a control system and a flight stabilization system for an unmanned aerial vehicle.


References

[1] Ilyukhin S.N., Benevol

[2] Kalugin V.T., Golubev A.G., Epikhin A.S. Aerodinamika [Aerodynamics]. Moscow, Bauman MSTU Publ., 2017 (in Russ.).

[3] Moskalenko V.O., Kosyrev A.A. The effect of stabilizer sweep on aerodynamic characteristics of UVA. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2019, no. 1. DOI: 10.18698/2308-6033-2019-1-1838URL: http://engjournal.ru/catalog/arse/ahtp/1838.html (in Russ.).

[4] Moskalenko V.O., Kosyrev A.A. The sweep angle effect on the aerodynamic behaviour of the wing. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2018, no. 2. DOI: 10.18698/2308-6033-2018-2-1735 URL: http://engjournal.ru/catalog/arse/ahtp/1735.html (in Russ.).

[5] Ilyukhin S.N., Toporkov A.G., Koryanov V.V., et al. Actual aspects of control system development for advanced unmanned aerial vehicles. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2015, no. 9. DOI: 10.18698/2308-6033-2015-9-1450 URL: http://engjournal.ru/catalog/arse/adb/1450.html (in Russ.).

[6] Ilyukhin S.N. Synthesis of guidance system and stabilization loop by log-magnitude diagram method at the example of arbitrary air defense missile model. Molodezhnyy nauchno-tekhnicheskiy vestnik, 2012, no. 7. URL: http://ainsnt.ru/doc/467279.html (in Russ.).

[7] Kalinovskiy T.A., Klishin A.N., Ilyukhin S.N. Employing functional lead to improve homing system efficiency. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2018, no. 10. DOI: 10.18698/2308-6033-2018-10-1812 URL: http://engjournal.ru/catalog/arse/adb/1812.html (in Russ.).

[8] Lysenko L.N. Navedenie ballisticheskikh raket [Ballistic rocket direction]. Moscow, Bauman MSTU Publ., 2016 (in Russ.).

[9] Dmitrievskiy A.A., Lysenko L.N. Vneshnyaya ballistika [External ballistics]. Moscow, Mashinostroenie Publ., 2005 (in Russ.).

[10] Platunova A.V., Klishin A.N., Ilyukhin S.N. Special aspects of forming adaptive laws of high-precision aircraft control. Inzhenernyy vestnik [Engineering Bulletin], 2016, no. 10. URL: http://engsi.ru/doc/851360.html (in Russ.).