|

Estimation and compensation of zero drifts of angular velocity sensors in strapdown inertial navigation systems

Authors: Sadchickov Yu.G.
Published in issue: #1(30)/2019
DOI: 10.18698/2541-8009-2019-1-423


Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control

Keywords: strapdown inertial navigation system, angular velocity sensor, drift, gyroscope, satellite navigation system, Kalman filter, compensation estimation, negative feedback
Published: 16.01.2019

The main disadvantage of the strapdown inertial navigation system is the error accumulation in the output parameters over time. One of the reasons for these errors is the zero drifts of the angular velocity sensors. The article describes the methods of their evaluation and compensation using the Kalman filter and compensation estimation. Both methods are based on the use of external information from a satellite navigation system. We consider GPS as the information source. A comparison of these methods is given and their performance is proved, confirmed by the test results of a strapdown inertial navigation system during a helicopter cruise flight.


References

[1] Tereshkov V.M. Metodika polunaturnykh ispytaniy korrektiruemykh besplatformennykh inertsial’nykh navigatsionnykh sistem. Diss. kand. tekhn. nauk [Iron bird test methodic for guided strapdown inertial navigation systems. Kand. tech. sci. diss.]. Moscow, Bauman MSTU Publ., 2011 (in Russ.).

[2] Titterton D.H., Weston J.L. Strapdown inertial navigation technology. The Institution of Electrical Engineers, 2004.

[3] Salychev O.S. Applied inertial navigation: problems and solutions. Moscow, Bauman MSTU Publ., 2004.

[4] Tereshkov V.M. Semirealistic simulation of inertial/satellite navigation system sensors. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2010, no. 8 URL: http://engineering-science.ru/doc/152269.html (in Russ.).

[5] Yakovlev V.B., ed. Teoriya avtomaticheskogo upravleniya [Automatic control theory]. Moscow, Vysshaya shkola Publ., 2005 (in Russ.).

[6] Kalman R.E. A new approach to linear filtering and prediction problems. J. Basic Eng., 1960, vol. 82, no. 1, pp. 35–45.

[7] Andreev V.D. Teoriya inertsial’noy navigatsii. Korrektiruemye sistemy [Inertial navigation theory. Guided systems]. Moscow, Nauka Publ., 1967. (in Russ.)

[8] Salychev O.S. MEMS-based inertial navigation. Expectations and reality. Moscow, Bauman MSTU Publ., 2012.

[9] Bagrova M.S., Shamsi Basha T. Choice of parameters for initial alignment of strapdown inertial navigation systems. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Priborostr. [Herald of the Bauman Moscow State Tech. Univ., Instrum. Eng.], 1999, no. 1, pp. 34–39 URL: http://vestnikprib.ru/catalog/navgyro/hidden/725.html (in Russ.).

[10] Pitman G.R., ed. Inertial guidance. Wiley, 1962 (Russ. ed.: Inertsial’nye sistemy upravleniya. Moscow, Voenizdat Publ., 1964.).