DOI: 10.18698/2541-8009-2023-6-915

УДК 621.434

ИДЕНТИФИКАЦИЯ ТЕРМОДИНАМИЧЕСКОЙ МОДЕЛИ ДВУХТАКТНОГО КАРБЮРАТОРНОГО ДВИГАТЕЛЯ МОЩНОСТЬЮ 1,5 КВТ

М.Г. Ольховой	olkhovoymg@student.bmstu.ru
Б.М. Барченко	barchenkobm@mail.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Идентификация математической модели двигате- ля является важным этапом для создания новых или оптимизации уже имеющихся двигателей, так как позволяет сократить сроки и затраты на всех этапах проектирования. В имеющейся лите- ратуре нет сведений о настройке математической модели в программном комплексе «Дизель-РК» для двухтактных карбюраторных высокооборот- ных двигателей с кривошипно-камерной продувкой. Выполнены измерения геометрии такого двигателя, описан проиесс настройки математической модели	Идентификация, двухтактный двигатель, эффективные пара- метры, расход воздуха, рабочий процесс, математическая мо- дель, погрешность, газообмен
«Дизель-РК», приведены результаты идентифика-	
ции математической модели на базе эксперимен-	
тальных данных, указана точность полученной	
мооели. Также описаны проолемы, выявленные	
в процессе идентификации, и сделаны выводы	Поступила в редакцию 31.05.2023
о необходимости доработок.	© МГТУ им. Н.Э. Баумана, 2023

Введение. Двигатели внутреннего сгорания непрерывно совершенствуются. Для улучшения параметров двигателя необходимо непрерывно создавать экспериментальные образцы, что дорого и долго, или проводить численную оптимизацию с помощью математического моделирования. Для того чтобы результаты моделирования соответствовали результатам натурного эксперимента [1], необходимы точные, настроенные математические модели, построенные на основе фундаментальных законов. При этом необходимо, чтобы их быстродействие было высоким, поскольку для численной оптимизации необходимо проведение большого количества расчетов.

В данной работе рассмотрены вопросы идентификации математической модели, заложенной в программный комплекс (ПК) «Дизель-РК» [2], на основе экспериментальных данных, полученных на кафедре «Комбинированные двигатели и альтернативные энергоустановки» МГТУ им. Н.Э. Баумана. Объектом исследования служит бензиновый двухтактный одноцилиндровый двигатель (Champion G052HTF-II [3]) с искровым зажиганием и кривошипнокамерной продувкой. Его параметры: диаметр цилиндра — 44 мм, ход поршня — 34 мм, рабочий объем двигателя — 51,7 см³, номинальная мощность — 1,4 кВт при частоте вращения коленчатого вала 6200 миг⁻¹.

Обзор. В настоящее время математические модели рабочего процесса двигателей можно разделить на два основных направления с условными названиями: «термодинамические» и «газодинамические». Наиболее глубоко разработанными можно признать «термодинамические», поскольку они исторически появились значительно раньше «газодинамических» — почти одновременно с появлением ДВС, и продолжают развиваться [4–7]. Однако в «термодинамических» моделях традиционно существует проблема расчета массообмена, и поэтому настройка этой модели является наиболее сложно и важной. Эта проблема особенно остро проявляется для высокооборотных двухтактных двигателей [8, 9]. Этому вопросу посвящено много работ [10–12]. Как известно, термодинамические модели имеют высокое быстродействие и позволяют проводить оптимизацию. В настоящее время в ПК «Дизель-РК» время единичного расчета двухтактного двигателя с искровым зажиганием, с кривошипнокамерной продувкой занимает не более 1 мин.

«Газодинамические» модели, позволяют проводить подробный расчет рабочего процесса в двигателе [13, 14], но время одного расчета исчисляется десятками часов. В таких условиях заниматься оптимизацией рабочего процесса становится невозможно.

Вопрос времени, необходимого для проведения единичного расчета, очень важен, поскольку для выбора оптимальных фаз газораспределения рассматриваемого в данной работе двухтактного двигателя необходимо выполнить как минимум 9–16 единичных расчетов. Для подбора оптимальных значений степени сжатия, коэффициента избытка воздуха, угла опережения зажигания необходимо порядка 50–70 единичных расчетов. В случае использования «термодинамической» модели (при времени единичного расчета 1 мин) понадобится не более 90 мин, т. е. около 1,5 ч. При использовании «газодинамической» модели понадобится (при времени единичного расчета 10 ч) около 100 ч.

Существенный недостаток «термодинамических» моделей — необходимость настройки математических моделей специфическими (не фундаментальными) коэффициентами, может быть нивелирован систематической работой по идентификации математических моделей. К таким специфическим моделям и их коэффициентам можно отнести течение рабочего тела в камере сгорания (при газообмене, сжатии, расширении и сгорании), в системах впуска и выпуска и других моделей [15]. Данная работа направлена на уточнение коэффициентов математической модели впускной и выпускной системы двигателя 1Д4,4/3,4 на основании экспериментальных данных.

Измерение геометрии элементов двигателя. Для создания математической модели в ПК «Дизель-РК» необходимо внести ряд конструктивных и режимных параметров. Был измерен диаметр цилиндра и ход поршня с помощью штангенциркуля (рис. 1), с точностью 0,1 мм. Диаметр цилиндра составил 44,0 мм, ход поршня 34,0 мм.

Рис. 1. Измерение хода поршня (*a*) и диаметра цилиндра (*б*) двигателя Champion G052HTF-II и схема измерения хода поршня (*в*): ВМТ — верхняя мертвая точка; НМТ — нижняя мертвая точка

в

Была рассчитана геометрическая и действительная степень сжатия [16]. Для этого был измерен объем камеры сгорания, при положении поршня в ВМТ, путем заливки масла в камеру сгорания. Масло заливалось с помощью шприца с точностью ±0,2 мл. Объем масла, залитого в камеру сгорания, составил 5,5 мл.

Геометрическая степень сжатия

$$\varepsilon = \frac{V_a}{V_C} = \frac{V_h + V_C}{V_C} = \frac{51,7+5,5}{5,5} = 10,4,$$

где V_a — полный объем цилиндра; V_C — объем камеры сгорания; V_h — рабочий объем.

Действительная степень сжатия была рассчитана после измерения размеров окон на цилиндре (результаты измерений приведены ниже):

Политехнический молодежный журнал. 2023. № 06

$$\varepsilon = \frac{V_{\rm A} + V_{\rm C}}{V_{\rm C}} = \frac{\pi D^2 S_{\rm A} + V_{\rm C}}{4V_{\rm C}} = \frac{\pi \cdot 4, 4^2 \cdot 2,675 + 5,5}{4 \cdot 5,5} = 7,6$$

где $V_{\rm d}$ — действительный рабочий объем;
 $S_{\rm d}$ — действительный рабочий ход поршня.

Объем кривошипной камеры $V_{\rm KK}$ составил 91,5 мл.

Была рассчитана степень сжатия кривошипной камеры:

$$\varepsilon_{\rm KK} = \frac{V_{\rm KK} + V_h}{V_{\rm KK}} = \frac{91, 5 + 51, 7}{91, 5} = 1, 5.$$

У двигателя были измерены углы фаз газораспределения. Для этого он был полностью разобран, установлен дисковый лимб, с помощью которого определялся момент открытия окон «на просвет». Результаты измерений приведены на рис. 2.

Рис. 2. Фазы газораспределения двигателя Champion G052HTF-II:

///// — фаза выпуска; \/\\\ — фаза продувки; ххххх — фаза впуска

Рис. 3. Развертка цилиндра двигателя Champion G052HTF-II: А — выпускное окно; Б — впускное окно; В — продувочные окна

Политехнический молодежный журнал. 2023. № 06

У двигателя была измерена развертка цилиндра. Измерения проводили по отпечатку на бумаге, а также с помощью штангенциркуля. Поскольку головка цилиндра не съемная, за базовую поверхность был принят нижний разъем цилиндра (плоскость присоединения к картеру коленчатого вала двигателя). Результаты измерений развертки цилиндра приведены на рис. 3.

Математическая модель. Создание математической модели начинается с основных параметров двигателя. Для ПК «Дизель-РК» будут уточнены: геометрия цилиндропоршневой группы (см. рис. 4, *a*), режимы работы (см. рис. 4, *b*), параметры окон газораспределения (см. рис. 4, *b*, *c*), углы фаз газораспределения (рис. 5, *a*, *b*), а также параметры впускного и выпускного коллекторов (рис. 6, *a*, *b*).

Геометрия ЦПГ была получена после полного разбора двигателя. Параметры окон были учтены с помощью развертки цилиндра.

а

б

Рис. 4. Геометрия ЦПГ (*a*), режимы работы двигателя (*б*), параметры выпускного (*в*) и продувочного (*г*) окон

Фазы газораспределения перенесены с круговой диаграммы (см. рис. 2).

Геометрия коллекторов исследуемого двигателя отличается от представленной в модели ПК «Дизель-РК», поэтому значения длин и диаметров трубопроводов могут отличаться, но в качестве первого приближения были заданы действительные параметры.

время-сечение выпуска	-provide the state of the providence	вы ідскной коллектор
	Фазы продувки	
67	НАЧАЛО, [градусы до HMT]	47
L	ОКОНЧАНИЕ	
	О Задать явно, [град. за HMT]	
	О Зарала возда стискательно НМ Г	
	O addate upodoniku tenevocite upoddević liti	wi j
	Диаграмма изменения проходного сечения	
счета геометрии)	Эадать в виде графика (по результатам ра	счета геометрии)
	Экспресс-оценка	
	Эадать по умолчанию	
0.75	Настроечный коэффициент расхода окон	0.72
кных окон	Разнеры продуе	очных окон
	62 Счета перметрич) 0.25 хных окон	Фази продувки: НАЧАЛО, (градуси до НМТ) ОХОНЧАНИЕ ОЗадать явно, (град. за НМТ) ОЗадать явно, (град. за НМТ) ОЗадать продолжительно НМТ Озадать продолжительность продувки, (гри Озадать продолжительность продувки, (гри Озадать по умолчанию Осенная Озадать по умолчанию Осенная Озадать по умолчанию Осенная Озадать по умолчанию Осенная Осенная Озадать по умолчанию Осенная Осенная Озадать по умолчанию Осенная Осенная Осенная Озадать по умолчанию Осенная

Рис. 5. Време-сечение выпуска (*a*) и продувки (*б*)

ВПускной коллектор	Кривошипная камера	Продувочные органы	Вреня-сечение продуеки	ВЫПускной коллектор
Длина, [мм]		50	Длине, [ни]	50
Диаметр, [мм]		15	Диаметр. (им)	10
Периметр поперечного сечен	ия, [мм]	50	Число цилиндров, объединенных общин коллекто Поправочный ниожитель Cexh в форнулах расче	ră
Число цилиндров, объединен	ных общим коллектором	1	коэффициентов теплоотдачи в выпускном колле (1.)	кторе и каналах 🕜 🤄
Диаметр трубопровода, пода	ощего воздух во впускной колле	ктор, [мм] 20	Температура среды, охлаждающей коллектор. [К] Коллектор с жидкостным охлаждением (с	жаровой трубой)
Коэффициент потерь Ksi_in в охладителя наддувочного во: впускного коллектора (05)	гракте от $\sigma := 1 - \frac{k}{k+1}$	$\frac{1}{\lambda^2} \xi_{in}$	Скема соединения выпускных коллекторов © Отдельная выклапная труба для каждого кол Общая выклопная труба для нескольких колл	лектора экторов
Поправочный множитель Cint теплоотдачи во впускном кол	з уравнениях коэффициентов лекторе и впускном канале (0.6)	0,6	Диаметр выхлопной трубы (после соединения ког	плекторов). [нн]
	а		б	

Рис. 6. Параметры коллекторов: впускного (а) и выпускного (б)

Идентификация математической модели. Режим номинальной мощности. Для исследования работы двигателя и его оптимизации необходимо предварительно выполнить идентификацию математической модели — установление степени соответствия результатов, полученных на модели и на реальном объекте [17]. Идентификация зачастую связана также и с настройкой математической модели — подбором параметров модели, обеспечивающих наилучшее совпадение результатов, полученных на модели и на реальном объекте. Следующая часть статьи посвящена решению проблемы подбора таких параметров в ПК «Дизель-РК».

Идентификация математической модели проводилась на номинальном режиме (в табл. 1, 2 — режим 3), так как на данном режиме используется полное открытие дроссельной заслонки и потери на впуске (после дросселя) могут быть приняты в диапазоне 0...0,01 бар. Данная оценка потерь сделана на основе предыдущего опыта идентификации математической модели ПК «Дизель-РК», по другим наиболее полным экспериментальным данным.

При расчете рабочего процесса (на всех режимах) расход топлива, а точнее цикловая подача, в ПК «Дизель-РК» задавался по данным эксперимента [18],

которые представлены в табл. 1. Результаты расчета режима номинальной мощности, соответствующего полному открытию дроссельной заслонки, приведены в табл. 2.

Режим	N_e , кВт	ε _{Ne} , %	G _в , кг/с	ε _{GB} ,%	<i>G</i> _т , кг/с	ε _{GT} ,%
1	0,215	1,0	$1,130 \cdot 10^{-3}$	2,5	0,090 · 10 ⁻³	3,7
2	0,547	1,0	$1,700 \cdot 10^{-3}$	2,5	$0,130 \cdot 10^{-3}$	2,5
3	1,519	1,0	$2,780 \cdot 10^{-3}$	2,5	$0,264 \cdot 10^{-3}$	1,0

Таблица 1. Результаты эксперимента

Таблица 2. Эффективные параметры первого расчета режима номинальной мощности

Параметр	Расчет	Эксперимент	Относительная погрешность, %
N_e , к B т	1,486	1,519	2,20
<i>G</i> _в , г/с	2,620	2,780	5,70

Из сравнения результатов моделирования и экспериментальных данных (см. табл. 2), видно, что в расчете расход воздуха получен меньше, чем в эксперименте, и его необходимо увеличить, так как относительная погрешность по расходу воздуха 5,7 %. При этом точность измерения расхода воздуха составляет 2,5 %. С этой целью проведем анализ зависимости расхода воздуха от геометрии впускного и выпускного коллекторов.

На рис. 7 приведены результаты численного эксперимента в ПК «Дизель-РК» при различных длинах и диаметрах впускного и выпускного трубопровода.

Из графиков, приведенных на рис. 7, можно сделать вывод, что изменение геометрии лишь одного коллектора не приведет к точному значению расхода. А так как геометрия выпускного коллектора двигателя Champion G052HTF-II сильно отличаются от модели, используемой в ПК «Дизель-PK», то изменим его диаметр с 10 до 20 мм, и проведем расчет рабочего процесса двигателя. На рис. 8 приведены результаты расчета расхода воздуха в зависимости от диаметра впускного коллектора, при длине выпускного трубопровода 50 мм и диаметре 20 мм.

На рис. 8 видно, что расход воздуха, соответствующий диаметру впускного коллектора 20 мм, близок к значению экспериментального расхода. Параметры двигателя при диаметре впускного коллектора 20 мм на режиме номинальной мощности (режим 3) приведены в табл. 3.

Рис. 7. Диаграммы зависимости расхода воздуха от геометрии впускного (*a*) и выпускного (*б*) коллекторов:

Рис. 8. Диаграммы зависимости расхода воздуха от геометрии впускного коллектора при измененных параметрах выпуска:

●●●●●● длина трубопровода 50 мм; —×—×—×— экспериментальный расход

В табл. 4 под относительной погрешностью имеется в виду относительная разница между расчетом и экспериментом, которая может быть рассчитана по формулам

$$\delta N_e = \frac{N_e - N_{e,p}}{N_e};$$
$$\delta G_{\rm B} = \frac{G_{\rm B} - G_{\rm B,p}}{G},$$

где $N_{e,p}$, $G_{\text{в.p}}$ — рассчитанные в ПК «Дизель-РК» эффективная мощность и расход воздуха соответственно.

Таблица 3. Эффективные параметры режима номинальной мощности (режим 3) после настройки математической модели систем впуска и выпуска

Параметр	Расчет	Эксперимент	Относительная погрешность, %
<i>N</i> _e , кВт	1,576	1,519	3,75
<i>G</i> _в , г/с	2,820	2,780	1,44

Согласно данным табл. 3, результат расчета Ne и GB в ПК «Дизель-PK» не входит в допустимый диапазон погрешности эксперимента. Однако отклонение можно считать незначительным и допустимым для проведения дальнейших исследований двигателя на данном режиме.

Частичные режимы. Измерить потери давления после дросселя в экспериментах не удалось. Поэтому на режимах 1 и 2 (при частичном открытии дросселя), чтобы получить необходимую точность по расходу воздуха, подбирают потери давления во впускном устройстве Δp_{su} .

Вначале были подобраны потери для режима 2 (см. табл. 4, 5). Потери давления на впуске варьировались в широком диапазоне значений. В итоге с помощью пробных расчетов было определено, что они лежат в области 0,22... 0,23 бар (для обеспечения необходимо расхода воздуха). При потерях давления во впускном устройстве 0,226 бар были полученные параметры двигателя, которые приведены в табл. 4.

Из данных табл. 4 следует, что рассчитанный расход воздуха значительно ниже экспериментального. Чтобы увеличить расход необходимо понизить потери на впуске. Пересчитаем все параметры, изменив потери давления с 0,226 на 0,225 бар, и занесем их в табл. 5.

Параметр	Расчет	Эксперимент	Относительная погрешность, %
N_e , к B т	0,477	0,547	12,80
<i>G</i> _в , г/с	1,190	1,700	30,00

Таблица 4. Эффективные параметры расчет режима 2 при потерях 0,226 бар

Ταδπιιμα 5	Эффектирине	параметры раси	тет пежима 7 пр	м потерду () 225 бал
1 и0// ици 5.	Эффективные	napamerph pace	101 режима 2 пр	и потерях 0,225 оај

Параметр	Расчет	Эксперимент	Относительная погрешность, %
<i>N</i> _e , кВт	1,193	0,547	118,10
<i>G</i> _в , г/с	1,980	1,700	16,47

По данным табл. 6 видно, что при изменении потерь давления во впускном устройстве на 0,001 бар расход воздуха сильно возрастает, также это можно

заметить на графике зависимости расхода от потерь (рис. 9, *б*). Точность моделирования при потерях на впуске 0,226 бар выше, чем при 0,225 бар. В связи с этим будем использовать результаты расчета, соответствующие потерям на впуске 0,226 бар, при дальнейшем анализе результатов математического моделирования режима 2.

Рис. 9. Диаграммы зависимости эффективной мощности (*a*) и расхода воздуха (*б*) от потерь давления во впускном устройстве:

На режиме 1 также невозможно подобрать значения близкие к экспериментальным. В табл. 6 приведен результат расчета при потерях давления во впускном устройстве 0,209 бар, которые наиболее близки к экспериментальным данным.

The set of	Таблица 6.	Эффективные	е параметры расч	ет режима 1 п	ри потерях 0,209 б	jap
---	------------	-------------	------------------	---------------	--------------------	-----

Параметр	Расчет	Эксперимент	Относительная погрешность, %
N_e , к B т	0,334	0,215	46,04
<i>G</i> _в , г/с	0,841	1,130	25,57

Результаты идентификации математической модели. Идентифицировать математическую модель рассматриваемого двигателя удалось с точностью 3,75 % (по N_e) лишь на режиме номинальной мощности. В табл. 7 представлена эффективная мощность, полученная экспериментально (N_e) и расчетом ($N_{e,p}$); приведена точность эксперимента (ε_{N_e}), определенная ранее, и рассчитаны погрешности абсолютные:

$$\Delta N_e = \left| N_e - N_{e.p} \right|$$

и относительные:

$$\delta_{N_e} = \frac{\Delta N_e}{N_e} \cdot 100 \%.$$

Режим	N_e , к B т	<i>N_{e.p}</i> , кВт	ΔN_e , кВт	δ _{Ne} , %	$\epsilon_{N_e}, \%$
1	0,215	0,334	±0,119	46,04	1
2	0,547	0,477	±0,070	12,80	1
3	1,519	1,576	±0,057	3,75	1

Таблица 7. Погрешность эффективной мощности

Из данных табл. 7 следует, что наибольшая точность достигнута на режиме 3 (номинальной мощности), на которой проводилась настройка математической модели системы впуска и выпуска в ПК «Дизель-РК». Из сравнения погрешности расчета и точности эксперимента следует, что погрешность расчета мощности (3,75%) на режиме 3 превышает погрешность эксперимента (1%), что означает, что математическая модель настроена недостаточно точно. На режиме 3, дальнейшая настройка математической модели может быть связана с уточнением процессов, происходящих при закрытых органах газообмена, так как по расходу воздуха получено совпадение 1,44% (см. табл. 5), что близко к точности измерения расхода воздуха. Сравнение полученной точности расчета расхода воздуха приведено в табл. 8.

В табл. 8 представлена точность эксперимента ($\varepsilon_{G_{\rm B}}$), экспериментальные ($G_{\rm B}$) и расчетные ($\Delta G_{\rm B,p}$) значения расхода воздуха, а так же рассчитанные по-грешности:

- абсолютные

$$\Delta G_{\rm B} = \left| G_{\rm B} - G_{\rm B.p} \right|;$$

- относительные

$$\delta_{G_{\rm B}} = \frac{\Delta G_{\rm B}}{G_{\rm B}} \cdot 100 \%$$

Таблица 8.	Погрешность	расхода	воздуха
------------	-------------	---------	---------

Режим	$G_{_{ m B}}$, кг/с	G _{в.р} , кг/с	$\Delta G_{\scriptscriptstyle m B}$, кг/с	δ _{<i>G</i>_B} , %	٤ _{G,} , %
1	$1,130 \cdot 10^{-3}$	0,841 · 10 ⁻³	0,289 · 10 ⁻³	25,57	2,5
2	$1,700 \cdot 10^{-3}$	$1,190 \cdot 10^{-3}$	$0,510 \cdot 10^{-3}$	30,00	2,5
3	$2,780 \cdot 10^{-3}$	2,820 · 10 ⁻³	$0,040 \cdot 10^{-3}$	1,44	2,5

Полученная (табл. 8) относительная погрешность расчета (25...30 %) расхода воздуха на режимах 1 и 2 на порядок превышает точность измерения (2,5 %), что говорит о том, что модель расчета газообмена не позволяет получать результат соответствующий реальному процессу. Существует также проблема измерения и расчета ДВС на малых нагрузках. Измерение параметров двигателя и моделирование рабочего процесса ДВС при очень малых изменениях параметров цикла и эффективных показателях, а зачастую и нестабильной работой, сложно и приводит к повышенным погрешностям. Частичные режимы 1 и 2 имеют нагрузку по крутящему моменту (0,215/4060) / (1,519/6520) = 0,227 ≈ 23 % и (0,547/5200) / (1,519/6520) = 0,452 ≈ 45 %, соответственно. Такие нагрузки не являются низкими, и поэтому пониженную точность моделирования невозможно связывать с малыми параметрами.

Из сделанных оценок следует, что необходимо дальнейшее совершенствование моделей газообмена для двигателей с малым рабочим объемом, с кривошипно-камерной продувкой в ПК «Дизель-РК». В связи с этим в дальнейшем намечена работа по объединению математической модели цилиндра на основе термодинамики и одномерного выпускного трубопровода, на основе газовой динамики. Запланирована также работа по совершенствованию измерений: получение индикаторных диаграмм в кривошипной камере и камере сгорания; измерение коэффициента продувки, коэффициента остаточных газов и коэффициента наполнения.

Выводы. В данной работе был описан процесс идентификации термодинамической модели ПК «Дизель-РК» малоразмерного двухтактного двигателя с кривошипно-камерной продувкой. Во время проведения данной работы были выявлены проблемы при моделировании частичных режимов рассматриваемого двигателя. Также в процессе идентификации было выявлено, что существует недостаток в экспериментальных данных для расчета газообмена, к которым можно отнести неизвестные: коэффициент наполнения, коэффициент продувки, коэффициент остаточных газов, а также эффективные проходные сечения органов газообмена (геометрия окон при этом была измерена и задана в ПК «Дизель-РК»). Данные проблемы планируется устранить в будущей работе.

Сформулировать результаты работы можно следующим образом:

 – настроить термодинамическую модель, только по эффективным показателям и расходу воздуха (без индицирования), с точностью, приемлемой для дальнейшего исследования и оптимизации, оказалось возможным только на одном режиме;

 подбор геометрии впускной и выпускной систем показал, что необходимо уточнить математическую модель систем впуска и выпуска, поскольку подбор их размеров приводит к увеличению точности расчета расхода воздуха; при этом диаметр выпускного трубопровода пришлось увеличить в 2 раза, а впускного — в 1,3 раза;

– также в результате моделирования было установлено, что даже небольшое изменение параметров на впуске (изменение потерь на впуске на 0,001 бар, режим 2) может приводить к скачкообразному изменению расхода воздуха, чего в реальном двигателе не наблюдается; данный факт говорит о том, что необхо-

димо уточнение математической модели впуска для двигателя внутреннего сгорания с кривошипно-камерной продувкой.

Литература

- Laimbock F., Landerl C. 50cc Two-Stroke Engines for Mopeds, Chainsaws and Motorcycles with Catalysts. SAE Technical Paper, 1990, art. 901598. https://doi.org/10.4271/901598
- [2] Программный комплекс ДИЗЕЛЬ-РК. URL: https://diesel-rk.bmstu.ru/Rus/index.php (дата обращения 12.03.2022).
- [3] Двухтактный двигатель Champion G052HTF-II. URL: https://championtool.ru/ catalog/dvigateli/dvukhtaktnye/champion-g052htf-ii/ (дата обращения 06.05.2022).
- [4] *Two-Stroke Wave-Action Engine Simulation*. URL: https://www.motionsoftware.com/ DynomationTwoStroke.htm (accessed March 11, 2022).
- [5] NT project. Engine 2S. URL: http://www.ntproject.com/software_2t_eng.htm (accessed March 10, 2022).
- [6] *Two stroke engine simulation 2t.* URL: https://reinben.tistory.com/25 (accessed March 12, 2022).
- [7] Haworth D., Huebler M., El Tahry S., Matthes W. Multidimensional calculations for a two-stroke-cycle engine: a detailed scavenging model validation. SAE Technical Paper, 1993, art. 932712. https://doi.org/10.4271/932712
- [8] Blair G.P. *Design and Simulation of TwoStroke Engines*. PA, Commonwealth Drive Warrendale, SAE Publ., 1996, 641 p.
- [9] Кондрашов В.М., Григорьев Ю.С., Тупов В.В. и др. Двухтактные карбюраторные двигатели внутреннего сгорания. Москва, Машиностроение, 1990, 272 с.
- [10] Zheng X., Fenzhu J., Shuiting D. et.al. Effect of scavenge port angles on flow distribution and performance of swirl-loop scavenging in 2-stroke aircraft diesel engine. *Chinese Journal of Aeronautics*, 2021, vol. 34 (3), pp. 105–117. https://doi.org/10.1016/j.cja.2020.07.015
- [11] Ramamurthy Hariharan, Mahalakshmi N.V., Jeyachandran Krishnamoorthy. CFD Analysis of Gas Exchange Process in a Motored Small Two-stroke Engine. *Journal of Applied Sciences*, 2011, vol. 11, pp. 36–45. https://doi.org/10.3923/jas.2011.36.45
- [12] Tommaso Savioli. CFD Analysis of 2-Stroke Engines. *Energy Procedia*, 2015, vol. 81, pp. 723–731. https://doi.org/10.1016/j.egypro.2015.12.078
- [13] Mitianiec W., Buczek K. Modification of four-stroke engine for operation in two-stroke cycle for automotive application. *Combustion Engines*, 2015, vol. 162 (3), pp. 3–12.
- [14] Лобов Н.В. Улучшение характеристик двухтактных двигателей внутреннего сгорания оптимизацией газовоздушного тракта. Автореф. дис. ... канд. техн. наук. Москва, 2005, 34 с.
- [15] Yuan Qiao, Xucheng Duan, Kaisheng Huang et. al. Scavenging Ports' Optimal Design of a Two-Stroke Small Aeroengine Based on the Benson/Bradham Model. *Energies*, 2018, vol. 11, art. 2739. https://doi.org/10.3390/en11102739

Политехнический молодежный журнал. 2023. № 06

- [16] Орлин А.С., Круглов М.Г., ред. Двигатели внутреннего сгорания. Т.2. Теория пориневых и комбинированных двигателей. Москва, Машиностроение, 1983, 372 с.
- [17] Кафаров В.В., Ветохин В.Н. Основы построения операционных систем в химической технологии. Москва, Наука, 1980, 429 с.
- [18] Ольховой М.Г., Барченко Б.М. Экспериментальное исследование работы двухтактного малоразмерного двигателя по винтовой характеристике. *Политехнический молодежный журнал*, 2022, № 10 (75). https://dx.doi.org/10.18698/2541-8009-2022-10-832

Ольховой Максим Геннадьевич — студент магистратуры кафедры «Комбинированные двигатели и альтернативные энергоустановки», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Барченко Борис Михайлович — инженер кафедры «Комбинированные двигатели и альтернативные энергоустановки», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — Барченко Филипп Борисович, кандидат технических наук, доцент кафедры «Комбинированные двигатели и альтернативные энергоустановки», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Ссылку на эту статью просим оформлять следующим образом:

Ольховой М.Г., Барченко Б.М. Идентификация термодинамической модели двухтактного карбюраторного двигателя мощностью 1,5 кВт. *Политехнический молодежный журнал*, 2023, no. 06 (83). http://dx.doi.org/10.18698/2541-8009-2023-6-915

IDENTIFYING THERMODYNAMIC MODEL OF THE 1.5 KW TWO-STROKE CARBURETOR ENGINE

M.G. Olkhovoy B.M. Barchenko olkhovoymg@student.bmstu.ru barchenkobm@mail.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords			
Identifying the engine mathematical model is an im-	Identification, two-stroke engine,			
portant step in creation or optimization of the existing	effective parameters, air consump-			
engines making it possible to reduce terms and costs at all	tion, working process, mathematical			
the design stages. The available literature provides no	model, error, gas exchange			
information about the mathematical model setting in the				
Diesel-RK software package for the two-stroke high-speed				
carburetor engines with the crank-chamber purge. Ge-				
ometry of such an engine is measured, the process of the				
Diesel-RK mathematical model setting is described, re-				
sults of the mathematical model identification based on				
the experimental data are presented, and the obtained				
model accuracy is indicated. Problems identified in the	Received 31.05.2023			
identification process are also described, and conclusions	© Bauman Moscow State Technical			
are drawn on the need for improvements.	University, 2023			

References

- Laimbock F., Landerl C. 50cc Two-Stroke Engines for Mopeds, Chainsaws and Motorcycles with Catalysts. SAE Technical Paper, 1990, art. 901598. https://doi.org/10.4271/901598
- [2] *Programmnyy kompleks* "*DIZEL-RK*" [DIESEL-RK software package]. URL: https://diesel-rk.bmstu.ru/Rus/index.php (data obrashcheniya 12.03.2022).
- [3] Dvukhtaktnyy dvigatel' Champion G052HTF-II [Champion G052HTF-II two-stroke engine]. URL: https://championtool.ru/catalog/dvigateli/dvukhtaktnye/champion-g052htf-ii/ (accessed May 06, 2022).
- [4] *Two-Stroke Wave-Action Engine Simulation*. URL: https://www.motionsoftware.com/ DynomationTwoStroke.htm (accessed March 11, 2022).
- [5] NT project. Engine 2S. URL: http://www.ntproject.com/software_2t_eng.htm (accessed March 10, 2022).
- [6] Two stroke engine simulation 2t. URL: https://reinben.tistory.com/25 (accessed March 12, 2022).
- [7] Haworth D., Huebler M., El Tahry S., Matthes W. Multidimensional calculations for a two-stroke-cycle engine: a detailed scavenging model validation. SAE Technical Paper, 1993, art. 932712. https://doi.org/10.4271/932712
- [8] Blair G.P. *Design and Simulation of TwoStroke Engines*. PA, Commonwealth Drive Warrendale, SAE Publ., 1996, 641 p.
- [9] Kondrashov V.M., Grigor'ev Yu.S., Tupov V.V. et al. Dvukhtaktnye karbyuratornye dvigateli vnutrennego sgoraniya [Two-stroke carburetor internal combustion engines]. Moscow, Mashinostroenie Publ., 1990, 272 p. (In Russ.).

- [10] Zheng X., Fenzhu J., Shuiting D. et.al. Effect of scavenge port angles on flow distribution and performance of swirl-loop scavenging in 2-stroke aircraft diesel engine. *Chinese Journal* of Aeronautics, 2021, vol. 34 (3), pp. 105–117. https://doi.org/10.1016/j.cja.2020.07.015
- [11] Ramamurthy Hariharan, Mahalakshmi N.V., Jeyachandran Krishnamoorthy. CFD Analysis of Gas Exchange Process in a Motored Small Two-stroke Engine. *Journal of Applied Sciences*, 2011, vol. 11, pp. 36–45. https://doi.org/10.3923/jas.2011.36.45
- [12] Tommaso Savioli. CFD Analysis of 2-Stroke Engines. Energy Procedia, 2015, vol. 81, pp. 723–731. https://doi.org/10.1016/j.egypro.2015.12.078
- [13] Mitianiec W., Buczek K. Modification of four-stroke engine for operation in two-stroke cycle for automotive application. *Combustion Engines*, 2015, vol. 162 (3), pp. 3–12.
- [14] Lobov N.V. Uluchshenie kharakteristik dvukhtaktnykh dvigateley vnutrennego sgoraniya optimizatsiey gazovozdushnogo trakta [Improving the characteristics of two-stroke internal combustion engines by optimizing the gas-air path]. Abs. Ph. D. Diss. Moscow, 2005, 34 p. (In Russ.).
- [15] Yuan Qiao, Xucheng Duan, Kaisheng Huang et. al. Scavenging Ports' Optimal Design of a Two-Stroke Small Aeroengine Based on the Benson/Bradham Model. *Energies*, 2018, vol. 11, art. 2739. https://doi.org/10.3390/en11102739
- [16] Dvigateli vnutrennego sgoraniya. T. 2. Teoriya porshnevykh i kombinirovannykh dvigateley
 [Internal combustion engines. Vol. 2. Theory of piston and combined engines].
 Ed. Orlin A.S., Kruglov M.G. Moscow, Mashinostroenie Publ., 1983, 372 p. (In Russ.).
- [17] Kafarov V.V., Vetokhin V.N. Osnovy postroeniya operatsionnykh sistem v khimicheskoy tekhnologii [Fundamentals of building operating systems in chemical technology]. Moscow, Nauka Publ., 1980, 429 p. (In Russ.).
- [18] Ol'khovoy M.G., Barchenko B.M. Experimental study of a two-stroke small-size engine by helical characteristic. *Politekhnicheskiy molodezhnyy zhurnal*, 2022, no. 10 (75). (In Russ.). https://dx.doi.org/10.18698/2541-8009-2022-10-832

Olkhovoy M.G. — Master's Program Student, Department of Combined Engines and Alternative Power Plants, Bauman Moscow State Technical University, Moscow, Russian Federation.

Barchenko B.M. — Engineer, Department of Combined Engines and Alternative Power Plants, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — Barchenko F.B., Ph. D. (Eng.), Associate Professor, Department of Combined Engines and Alternative Power Plants, Bauman Moscow State Technical University, Moscow, Russian Federation.

Please cite this article in English as:

Olkhovoy M.G., Barchenko B.M. Identifying thermodynamic model of the 1.5 kW two-stroke carburetor engine. *Politekhnicheskiy molodezhnyy zhurnal*, 2023, no. 6 (83). (In Russ.). http://dx.doi.org/10.18698/2541-8009-2023-6-915