УДК 519.1

МОДЕЛИРОВАНИЕ ВСПЫШКИ ЭПИДЕМИИ COVID-19 В ДЕЙСТВИТЕЛЬНЫХ СОЦИАЛЬНЫХ СЕТЯХ

А.П. Попкова

popkovaap@student.bmstu.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Рассмотрены особенности действительных соци- альных графов и представлено обобщение классиче- ской модели распространения инфекции SIR на гра- фы, удовлетворяющие критериям социальной сети. Для коэффициента характерной скорости передачи вируса модели SIR введена зависимость от времени и структуры социального графа. Состояние каждого индивида определяется нахождением в трех группах модели SIR: восприимчивые, инфицированные и вос- становившиеся. Учитывается снижение интенсив- ности инфицирования при моделировании масочного режима и режима самоизоляции — мер, вводимых во многих странах для снижения заболеваемости COVID-19. Представлены результаты моделирова-	Ключевые слова Модель SIR, COVID-19, граф, со- циальная сеть, популяция, панде- мия, моделирование эпидемий, масочный режим, режим самоизо- ляции
ния распространения инфекции COVID-19 на при-	
мере графа Social circles: Facebook университета	Поступила в редакцию 21.10.2022
Стэнфорда.	© МГТУ им. Н.Э. Баумана, 2022

Введение. В последние годы в научной литературе существенно возрос интерес к моделированию эпидемий инфекционных заболеваний [1]. Это, в свою очередь, тесно связано с появлением новых вирусных инфекций, таких как TOPC (атипичная пневмония), лихорадка Эбола и коронавирусная инфекция 2019-nCoV (COVID-19), поражающих существенную массу населения [2]. Известно, что распространение эпидемии является сложным процессом, который характеризуется многими факторами, такими как тип заболевания, пути распространения инфекции, расположение эпидемического очага, наличие коллективного иммунитета и т. п. В данной работе показано, что достаточно упрощенное представление пандемии, заложенное в классической модели, качественно объясняет характер эволюции заболеваемости при применении таких мер, как масочный режим и режим самоизоляции.

Моделирование распространения эпидемии осуществляется на основе графа G = (V, E), где вершине соответствует человек, ребру — наличие социальной связи. Такого рода графы часто называют социальными сетями. Данное название может показаться противоречивым, ведь сети представляют собой действительную систему зависимых переменных, в то время как граф является математической абстракцией для описания сетей, но в большинстве литературных источников эти термины используются взаимозаменяемо [3].

Базовые положения. Сети, описывающие настоящий мир, отличаются от произвольных графов и обладают определенными свойствами, к которым относятся следующие.

1. *Разреженность*. В действительных сетях степень вершины ограничена, т. е. каждая вершина соединена только с малой долей всех вершин.

2. Распределение степеней вершин удовлетворяет законам с «тяжелыми хвостами», т. е. законам, не ограниченным на бесконечности экспоненциальным распределением.

3. Высокий коэффициент кластеризации (замыкание). Коэффициент кластеризации C_i для вершины *i* отображает свойство «Друг моего друга — мой друг» и вычисляется по формуле

$$C_i = \frac{\#$$
ребер между соседями вершины i
всевозможных ребер между соседями вершины i .

Здесь # — количество ребер; знаменатель дроби равен 0,5 $k_i(k_i - 1)$; k_i — степень вершины *i* для неориентированного графа.

Это свойство является одним из основных отличий сетей, описывающих настоящий мир, от случайных графов, которые, напротив, обладают низким коэффициентом кластеризации [4].

 Существование «сообществ». Замыкание способствует кластеризации действительных сетей в плотные «сообщества», которые, в свою очередь, соединены «слабыми связями». «Слабые связи» заполняют «структурные дыры», что можно наблюдать на рис. 1 [5].

Рис. 1. Структура сообществ в сетях, описывающих настоящий мир

5. Соответствие разновидности графа «Мир тесен». «Мир тесен» или «Маленький мир» — это разновидность графа, который удовлетворяет следую-

щему свойству: если взять две произвольные вершины a и b, то они с большой вероятностью не являются смежными, однако одна достижима из другой посредством небольшого количества переходов через другие вершины [6]. Принадлежность графа к этому типу определяется коэффициентами σ и ω . Значения данных коэффициентов вычисляются следующим образом:

$$\sigma = \frac{L_r}{L} \frac{C}{C_r};$$
$$\omega = \frac{L_r}{L} - \frac{C}{C_r}.$$

Здесь L_r — средняя длина кратчайшего пути в эквивалентном случайном графе; C — средний коэффициент кластеризации исходного графа; L — средняя длина кратчайшего пути в исходном графе; C_r — средний коэффициент кластеризации эквивалентного случайного графа; C_l — средний коэффициент кластеризации эквивалентного графа-решетки. При этом, чтобы граф удовлетворял концепции «Мир тесен», коэффициент σ должен быть намного больше единицы ($\sigma \gg 1$), а коэффициент ω близок к нулю ($\omega \approx 0$).

Описание модели. Для изучения распространения COVID-19 выберем базовую модель SIR [7]. При моделировании распространения эпидемии COVID-19, будем полагать, что индивиды могут находиться в одном из трех состояний: S восприимчивый (*susceptible*), I — инфицированный (*infected*), R — восстановившийся (*recovered*).

В результате развития эпидемии восприимчивые, заражаясь, переходят в класс инфицированных, которые по истечении периода заболевания восстанавливаются с иммунитетом, т. е. иммунитет появляется по истечении периода заражения. При наличии иммунитета индивид не является распространителем инфекции. Таким образом, состояния представимы в виде последовательности, показанной на рис. 2.

Рис. 2. Состояния индивида в построенной модели эпидемии

Опишем классическую модель SIR с точки зрения каждого индивида популяции размером *N*, для этого выразим вероятности нахождения в одном из трех возможных состояний. Данные вероятности представляются системой уравнений

$$\frac{dP_{S}^{(\alpha)}(t)}{dt} = -\sum_{\beta \neq \alpha}^{N} \frac{\Gamma^{(\alpha\beta)}}{N} P_{I}^{(\beta)}(t) P_{S}^{(\alpha)}(t);$$
(1)

$$\frac{dP_I^{(\alpha)}(t)}{dt} = -\sum_{\beta \neq \alpha}^N \frac{\Gamma^{(\alpha\beta)}}{N} P_I^{(\beta)}(t) P_S^{(\alpha)}(t) - \Theta^{(\alpha)} P_I^{(\alpha)}(t);$$
(2)

$$\frac{dP_R^{(\alpha)}(t)}{dt} = \Theta^{(\alpha)} P_I^{(\alpha)}(t).$$
(3)

Здесь $P_S^{(\alpha)}(t)$, $P_I^{(\alpha)}(t)$, $P_R^{(\alpha)}(t)$ — вероятности нахождения индивида α в одном из трех описанных состояний; $\Theta^{(\alpha)}$ — скорость восстановления; величина, обратная характерной длительности заболевания; $\Gamma^{(\alpha\beta)}$ — характерная скорость передачи вируса индивиду α вследствие его контакта с индивидом β , которая зависит от типа вируса и вводимых ограничительных мер в популяции. При этом для любого момента времени $t \ge 0$ выполняется условие нормировки

$$P_{S}^{(\alpha)}(t) + P_{I}^{(\alpha)}(t) + P_{R}^{(\alpha)}(t) = 1.$$

Тогда средние значения восприимчивых, инфицированных и тяжело больных в популяции составит соответственно

$$S(t) = \sum_{\alpha=1}^{N} P_{S}^{(\alpha)}(t); \qquad I(t) = \sum_{\alpha=1}^{N} P_{I}^{(\alpha)}(t); \qquad R(t) = \sum_{\alpha=1}^{N} P_{R}^{(\alpha)}(t).$$

Выведем дифференциальные уравнения традиционной модели SIR. Они получатся суммированием уравнений (1) – (3) по числу индивидов в популяции при упрощающем предположении, что скорости распространения инфекции для каждого индивида одинаковы и являются постоянными величинами $\Gamma^{(\alpha\beta)} = \Gamma = \text{const}$ и $\Theta^{(\alpha)} = \Theta = \text{const}$. Тогда получим следующую систему дифференциальных уравнений, соответствующую традиционной модели:

$$\frac{dS(t)}{dt} = -\Gamma \frac{S(t)I(t)}{N};$$
$$\frac{dI(t)}{dt} = \Gamma \frac{S(t)I(t)}{N} - \Theta I(t);$$
$$\frac{dR(t)}{dt} = \Theta I(t).$$

Здесь N = S(t) + I(t) + R(t) — константа, соответствующая размеру популяции.

Начальное состояние системы определяется как $I(0) = I_0$ и $R(0) = R_0$, где I_0 — количество зараженных на момент начала эпидемии; R_0 — индивиды, которые на момент начала распространения инфекции уже имеют иммунитет к этой болезни, составляют достаточно малый процент популяции.

Для моделирования вводимых режимов самоизоляции и ношения масок предполагается, что характерная скорость передачи вируса индивиду α вследствие его контакта с индивидом β в реализуемой модели SIR зависит от времени, следовательно, $\Gamma^{(\alpha\beta)} = \Gamma^{(\alpha\beta)}(t)$. С учетом этого данный коэффициент будет задаваться формулой

$$\Gamma^{(\alpha\beta)}(t) = \begin{cases} \eta_{\beta}\xi_{t}^{(\alpha\beta)}I(\alpha,\beta), & 0 \le t < t_{m}; \\ (0,5\eta_{\beta})\xi_{t}^{(\alpha\beta)}I(\alpha,\beta), & t_{m} \le t < t_{l}; \\ (0,5\eta_{\beta})\mu_{t}^{(\alpha\beta)}I(\alpha,\beta), & t \ge t_{l}. \end{cases}$$
(4)

Здесь t_m — время введения масочного режима; t_l — время введения режима самоизоляции ($t_m \le t_l$); $\eta_\beta \sim N(0,5;0,1)$ — заразность индивида β , зависящая от типа вируса; $\xi_t^{(\alpha\beta)} \sim \text{Ber}(0,5)$ — наличие контакта между индивидами α и β в момент времени t до введения режима самоизоляции; $\mu_t^{(\alpha\beta)} \sim \text{Ber}(0,05)$ — наличие контакта между индивидами α и β в момент времени t после введения режима самоизоляции.

Во всех трех уравнениях *I*(α, β) — индикаторная величина, указывающая наличие ребра (α, β) в социальной сети *G*, т. е.

$$I(\alpha,\beta) = \begin{cases} 1, & (\alpha,\beta) \in G; \\ 0, & (\alpha,\beta) \notin G. \end{cases}$$

В эпидемиологии постоянная η_{β} называется индексом контагиозности и понимается как доля восприимчивых (ранее не болевших и не вакцинированных) лиц, заболевших клинически выраженной формой болезни после их контакта с источником возбудителя инфекции в пределах эпидемического очага. Данная характеристика индивидуальна для каждого типа инфекции и для COVID-19 оценивается как (0,5±0,1) [8]. Исходя из этого, заразность каждого индивида в модели определена нормальной случайной величиной N(0,5;0,1). Множитель 0,5 для времени $t \ge t_m$ в формуле (4) отражает снижение заразности индивида β в 2 раза в связи с ношением им маски [9].

Однако для коэффициента $\Theta^{(\alpha)}$ зависимость от времени не требуется, так как длительность восстановления не зависит от вводимых ограничений. Отметим, что гипотеза $\Theta^{(\alpha)}$ = const в общем случае может быть неверна из-за есте-

Политехнический молодежный журнал. 2022. № 10

ственного прогресса в лечении пациентов, связанного с результатами различных исследований и стратегиями, принятыми системами здравоохранения [10].

Реализация модели. Реализованная модель распространения эпидемии была создана с использованием языка программирования Python 3. Одним из параметров модели, задаваемых пользователем, является структура социальной сети G, в которой происходит распространение заболевания. Также входными параметрами являются: число зараженных на момент времени t = 0 заданное как I_0 , период заражения свойственный данной инфекции, день введения режима самоизоляции t_1 и день введения масочного режима t_m . Для коронавирусной инфекции положим, что скорость восстановления для всех индивидов одинакова. Период заражения длится одиннадцать дней, следовательно, $\Theta^{(\alpha)} = \Theta = 1/11$ согласно описанному выше.

Реализованная симуляция распространения инфекции рассматривается на протяжении пятидесяти дней. Случайными величинами $\xi_t^{(\alpha\beta)}$ и $\mu_t^{(\alpha\beta)}$ в составе коэффициента $\Gamma^{(\alpha\beta)}(t)$ происходит моделирование встреч индивида с членами его эго-графа в социальной сети *G* в каждый день развития эпидемии.

Смоделируем пандемию COVID-19 с разными входными параметрами и сравним для них эволюцию распространения вируса. Для этого в качестве социального графа G взята открытая база данных под названием Social circles: Facebook Стэнфордского университета. Данный социальный граф представляет собой списки друзей некоторого круга пользователей (рис. 3).

Рис. 3. Граф Social circles: Facebook

Описание графа представлено ниже:

Количество вершин	
Количество ребер	
Средний коэффициент кластеризации	
Количество замыканий (треугольников)	1 612 010
Диаметр (наибольшая длина кратчайшего пути)	

Заметим, что характеристически данный граф соответствует социальной сети. Во-первых, граф Social circles: Facebook является разреженным, поскольку содержит только 88 234 ребра из 0,5n(n-1) = 8154741 возможных, что составляет только 1,1 %. Во-вторых, степени его вершин распределены по закону с «тяжелым хвостом», данное распределение изображено на рис. 4 в сравнении с экспоненциальным законом ($\lambda = 0,026$). В-третьих, граф обладает высоким средним коэффициентом кластеризации и на рис. 3 очевидно существование в нем сообществ. В-четвертых, 95 % доверительные интервалы коэффициентов $\sigma = 38,55\pm 5,64$ и $\omega = -0,069\pm 0,007$, что соответствует концепции «Мир тесен».

Рис. 4. Распределение степеней вершин графа Social circles: Facebook

Далее предполагается, что 1 % популяции имеет иммунитет к распространяющейся инфекции на момент начала эпидемии ($R_0 = 40$), на момент времени t = 0 заражен только один индивид ($I_0 = 1$). Изобразим на рис. 5 распределение инфицированных, восстановившихся и восприимчивых для случая, когда масочный режим и режим самоизоляции не были введены во время распространения инфекции.

А.П. Попкова

Рис. 5. Развитие эпидемии без масочного режима и самоизоляции

Пик заболеваемости пришелся на одиннадцатый день — на этот момент практически вся популяция была заражена, в то время как выздороветь никто не успел. На двадцать седьмой день распространение инфекции прекратилось, всей популяцией был приобретен иммунитет.

Рассмотрим социальный граф на 5, 15 и 20-й дни развития эпидемии на рис. 6. Так же как и на графике распределения, красным обозначены инфицированные особи, синим — восприимчивые, зеленым — восстановившиеся.

Рис. 6. Эволюция эпидемии на 5, 15 и 20-й день без введения масочного режима и режима самоизоляции

Рассмотрим случай введения масочного режима на второй день распространения эпидемии ($t_m = 2$). Распределение инфицированных, восстановившихся и восприимчивых отображено на рис. 7.

Моделирование вспышки эпидемии COVID-19 в действительных социальных сетях

Рис. 7. Развитие эпидемии с масочным режимом на 2-й день

На графиках, изображенных выше, наблюдается снижение максимального числа заболевших по сравнению с рис. 5, интенсивность заболеваемости пошла на спад — ее пик пришелся на 14-й день распространения вируса, на тридцать седьмой день всей популяцией был приобретен иммунитет. Рассмотрим социальный граф на 5, 15 и 20-й дни развития эпидемии при данном сценарии (рис. 8).

Рис. 8. Эволюция эпидемии на 5, 15 и 20-й день с введением масочного режима на 2-й день и без режима самоизоляции

При сравнении рис. 8 с рис. 6 становится заметна замедлившаяся прогрессия распространения вируса после введения масочного режима — на 5-й день заражена достаточно малая доля популяции, на 15-й день только единицы восстановились с иммунитетом, на 20-й день социальная сеть находится в таком же состоянии, как на 15-й день без введения каких-либо ограничительных мер (≈ 2000 инфицированных, ≈ 2000 восстановившихся). Изобразим на рис. 9 распределение инфицированных, восстановившихся и восприимчивых индивидов для случая, когда масочный режим был введен на 2-й день распространения инфекции и режим самоизоляции был введен на 5-й день.

Рис. 9. Развитие эпидемии с масочным режимом на 2-й день и режимом самоизоляции на 5-й день

Во-первых, после введения режима самоизоляции заметно значительное снижение темпов распространения вируса. Во-вторых, в отличие от рис. 5 и 7, в данном случае наблюдается наличие двух пиков («волн») кривой отображающей количество инфицированных — на 14-й день 1361 зараженный индивид, на 43-й день — 555 зараженных. Рассмотрим социальный граф на 5, 15 и 20-й дни развития эпидемии для сценария, когда масочный режим был введен на 2-й день распространения инфекции и режим самоизоляции был введен на 5-й день (рис. 10).

Рис. 10. Эволюция эпидемии на 5, 15 и 20-й день с введением масочного режима на 2-й день и режима самоизоляции на 5-й день

В данном случае можно наблюдать распространение вируса по сообществам, формируемым вершинами графа — индивиды в одном сообществе начинают выздоровление, когда инфекция продолжает свое развитие уже распространяясь в другом сообществе. При сравнении рис. 10 с рис. 8 становится также заметна замедлившаяся прогрессия распространения вируса после оперативного введения масочного режима и режима самоизоляции.

Выводы. Таким образом, в ходе данной работы были рассмотрены свойства, характерные для социальных сетей, описывающих настоящий мир, и создана модель распространения эпидемии COVID-19 в социальных сетях малой популяции. В качестве примера проведено моделирование инфекции в социальном графе, построенном на основе базы данных Social circles: Facebook Стэнфордского университета. Зная социальную сеть рассматриваемой популяции и параметры распространяющейся инфекции (включающей три состояния: S — восприимчивые, I — инфицированные и R — восстановившиеся), приведенная модель предоставляет возможность симуляции различных сценариев для рассмотрения и прогнозирования потенциальных исходов. Допустима дальнейшая работа по улучшению модели, например, добавление в симуляцию миграции индивидов между сообществами.

Литература

- Ризниченко Г.Ю. Математические модели в биофизике и экологии. М.-Ижевск, ИКИ, 2003.
- [2] Разумов Т.Е. Модель эпидемии SIR с учетом пространственной неоднородности расположения индивидов. *Политехнический молодежный журнал*, 2019, № 6. DOI: http://dx.doi.org/10.18698/2541-8009-2019-6-490
- [3] Newman M. Networks. An introduction. Oxford University Press, 2010.
- [4] Erdős P., Rényi A. On random graphs. I. Publicationes Mathematicae, 1959, vol. 6, pp. 290–297.
- [5] Granovetter M.S. The strength of weak ties. Am. J. Sociol., 1973, vol. 78, no. 6, pp. 1360–1380.
- [6] Watts D., Strogatz S. Collective dynamics of 'small-world' networks. *Nature*, 1998, vol. 393, 440–442. DOI: https://doi.org/10.1038/30918
- [7] Kermack W., McKendrick A. A contribution to the mathematical theory of epidemics. *Proc. R. Soc. Lond. A*, 1927, vol. 115, no. 772, pp. 700–721.
- [8] Sharov K.S. Creating and applying SIR modified compartmental model for calculation of COVID-19 lockdown efficiency. *Chaos Solit. Fractals*, 2020, vol. 141, art. 110295. DOI: https://doi.org/10.1016/j.chaos.2020.110295
- [9] Talic S., Shah S., Wild H. et al. Effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality: systematic review and meta-analysis. *BMJ*, 2021, vol. 375, art. e068302. DOI: https://doi.org/10.1136/bmj-2021-068302
- [10] Ianni A., Rossi N. Describing the COVID-19 outbreak during the lockdown: fitting modified SIR models to data. *Eur. Phys. J. Plus*, 2020, vol. 135, no. 11, art. 885.
 DOI: https://doi.org/10.1140/epjp/s13360-020-00895-7

Попкова Анастасия Павловна — студентка кафедры «Вычислительная математика и математическая физика», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — Облакова Татьяна Васильевна, кандидат физикоматематических наук, доцент кафедры «Вычислительная математика и математическая физика», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Ссылку на эту статью просим оформлять следующим образом:

Попкова А.П. Моделирование вспышки эпидемии COVID-19 в действительных социальных сетях. *Политехнический молодежный журнал*, 2022, № 10(75). http://dx.doi.org/10.18698/2541-8009-2022-10-831

MODELING OF THE COVID-19 EPIDEMIC OUTBREAK IN REAL-WORLD SOCIAL NETWORKS

A.P. Popkova

popkovaap@student.bmstu.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
In this paper, the features of real-world social graphs are	SIR Model, COVID-19, graph, social
considered and a generalization of the classical infection	network, population, pandemic,
spread model called SIR is applied to graphs that meet	epidemic modeling, mask measures,
the "social network" criteria. For the SIR model coeffi-	self-isolation measures
cient of the characteristic virus transmission rate, the	
dependence on time and the social graph structure is	
introduced. The individual condition is determined by	
three groups of the SIR model: susceptible, infected and	
recovered. The decrease in the infection intensity is taken	
into account when modeling the mask and self-isolation	
measures introduced in many countries in order to	
reduce the COVID-19 incidence. The results of modeling	
the COVID-19 infection spread are represented in the	
example of the "Social circles: Facebook" graph from	Received 21.10.2022
Stanford University.	© Bauman Moscow State Technical
• •	University, 2022

References

- [1] Riznichenko G.Yu. Matematicheskie modeli v biofizike i ekologii [Mathematical models in biophysics and ecology]. Moscow-Izhevsk, IKI Publ., 2003 (in. Russ.).
- [2] Razumov T.E. SIR epidemic model taking into account the spatial heterogeneity of the location of individuals. *Politekhnicheskiy molodezhnyy zhurnal* [Politechnical Student Journal], 2019, no. 6. DOI: http://dx.doi.org/10.18698/2541-8009-2019-6-490 (in. Russ.).
- [3] Newman M. Networks. An introduction. Oxford University Press, 2010.
- [4] Erdős P., Rényi A. On random graphs. I. Publicationes Mathematicae, 1959, vol. 6, pp. 290–297.
- [5] Granovetter M.S. The strength of weak ties. Am. J. Sociol., 1973, vol. 78, no. 6, pp. 1360–1380.
- [6] Watts D., Strogatz S. Collective dynamics of 'small-world' networks. *Nature*, 1998, vol. 393, 440–442. DOI: https://doi.org/10.1038/30918
- [7] Kermack W., McKendrick A. A contribution to the mathematical theory of epidemics. *Proc. R. Soc. Lond. A*, 1927, vol. 115, no. 772, pp. 700–721.
- [8] Sharov K.S. Creating and applying SIR modified compartmental model for calculation of COVID-19 lockdown efficiency. *Chaos Solit. Fractals*, 2020, vol. 141, art. 110295. DOI: https://doi.org/10.1016/j.chaos.2020.110295
- [9] Talic S., Shah S., Wild H. et al. Effectiveness of public health measures in reducing the incidence of covid-19, SARS-CoV-2 transmission, and covid-19 mortality: systematic review and meta-analysis. *BMJ*, 2021, vol. 375, art. e068302.
 DOI: https://doi.org/10.1136/bmj-2021-068302

[10] Ianni A., Rossi N. Describing the COVID-19 outbreak during the lockdown: fitting modified SIR models to data. *Eur. Phys. J. Plus*, 2020, vol. 135, no. 11, art. 885.
 DOI: https://doi.org/10.1140/epjp/s13360-020-00895-7

Popkova A.P. — Student, Department of Computational Mathematics and Mathematical Physics, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — Oblakova T.V., Cand. Sc. (Phys.-Math.), Assoc. Professor, Department of Computational Mathematics and Mathematical Physics, Bauman Moscow State Technical University, Moscow, 105005, Russian Federation.

Please cite this article in English as:

Popkova A.P. Modeling the COVID-19 epidemic outbreak in valid social networks. *Politekhnicheskiy molodezhnyy zhurnal* [Politechnical student journal], 2022, no. 10(75). http://dx.doi.org/10.18698/2541-8009-2022-10-831.html (in Russ.).