ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК КОАКСИАЛЬНЫХ ИГЛ ЭЛЕКТРОДОВ ДЛЯ КОНТРОЛЯ ВЕНЕПУНКЦИИ ЭЛЕКТРОИМПЕДАНСНЫМ МЕТОДОМ

А.З. Галямов И.В. Потапов

galyamovaz@student.bmstu.ru i.potapov@student.bmstu.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Исследованы коаксиальные игольчатые электроды с целью выбора оптимальной конструкции элек- тродной системы. Разработаны модели неодно- родных сред, имитирующих кровеносный сосуд и окружающие его мягкие ткани, а также модели коаксиальных игольчатых электродов. Проведен эксперимент для оценки влияния геометрических параметров игольчатых электродов на их харак- теристики. Осуществлено модельное исследование	Биоимпеданс, пункция, игольча- тый электрод, коаксиальная иг- ла, электродная система
игольчатых электродов в различных вариантах	Поступила в редакцию 20.02.2017
исполнения для оценки их характеристик	© МГТУ им. Н.Э. Баумана, 2017

Электроимпедансный метод является одним из методов контроля пункции кровеносных сосудов. Его ключевой составляющей является конструкция электродной системы. Перспективными считаются электродные системы в виде коаксиальной иглы. Для решения задач контроля пункции кровеносных сосудов выбор оптимальной конструкции электродной системы должен быть основан на способности электродных систем определять тип биологической ткани, в которой находится окончание инъекционной иглы [1–3].

Для количественного сравнения между собой различных конструкций электродных систем было введено понятие чувствительности электродной системы к проколу сосуда δ, % [4]:

$$\delta = \frac{Z_1 - Z_2}{Z_1} 100 \% ,$$

где Z₁, Z₂ — импедансы, измеренные электродной системой, при нахождении иглы на глубине h₁ и h₂ соответственно.

В работе предложены тканеэквивалентные неоднородные модели, имитирующие мягкие ткани и кровеносный сосуд. В соответствии с анатомическими особенностями биообъекта и поставленной задачей контроля прокола сосуда, было определено, на каких глубинах следует измерять импеданс. Глубина h_1 соответствует положению окончания иглы в мягких тканях вблизи сосуда, на 1–2 мм

выше стенки сосуда; глубина *h*₂ — положению иглы, при которой ее окончание целиком находится в сосуде.

В исследовании [3] было предложено использовать коаксиальную иглу и показано, что такая игла обладает лучшей чувствительностью при измерении импеданса вблизи окончания иглы.

В данной работе рассмотрены различные варианты исполнения игольчатых электродов, влияние их геометрических параметров на чувствительность системы к проколу стенки кровеносного сосуда для выбора оптимальной конструкции электродной системы.

Экспериментальные исследования на лабораторном стенде. Для оценки влияния толщины диэлектрического слоя на характеристики игольчатых электродов был проведен эксперимент с использованием фантома биологических тканей и моделей игл цилиндрической формы. Измерение импеданса в эксперименте проводилось на характерной для импедансных исследований частоте 100 кГц [2]. На такой частоте биологическую ткань можно считать проводником [5].

Фантом биологических тканей выполнен из тканеэквивалентых сред на основе солевого раствора, имитирующих мягкие ткани и кровь. Первый слой — гомогенная среда толщиной 15 мм. Второй слой — гомогенная среда толщиной 25 мм. Общая форма модели — цилиндр диаметром 60 мм, что позволяет избежать краевых эффектов в силу цилиндрической симметрии. Схема фантома представлена на рис. 1, *а.* Удельное сопротивление первой среды равно 5,64 Ом·м, что согласуется со значением, предложенным в литературе для мягких тканей (5 Ом·м). Удельное сопротивление второй среды равно 0,71 Ом·м, что согласуется со значением, предложенным в литературе для мягких тканей (5 Ом·м). Удельное сопротивление второй среды равно 0,71 Ом·м, что согласуется со значением, предложенным в литературе для мягких тканей (5 Ом·м).

Для предварительной экспериментальной оценки характеристик коаксиальных игл были разработаны модели игольчатых электродных систем. Они представлены цилиндрическими иглами без скоса на конце с внешним диаметром 11 мм и толщиной внешнего слоя 0,25 мм. В эксперименте использовались две модели коаксиальных игл: одна с внутренним диаметром $d_{in} = 2$ мм и толщиной диэлектрика $h_{diel} = 4,25$ мм, вторая с внутренним диаметром 4,5 мм и толщиной диэлектрика 3 мм. Структура модели игольчатого электрода и схема лабораторного стенда представлены на рис. 1.

Измерение импеданса проводилось на глубинах $h_1 = 10$ мм, $h_2 = 20$ мм, на основе этих данных вычислялась чувствительность игольчатого электрода. Измерение повторялось 3 раза для каждого электрода. Значение импеданса фиксировалось только через 1–2 мин после введения иглы и завершения переходных процессов.

Теоретические исследования численных моделей. Экспериментальные исследования были дополнены теоретическими с помощью пакета компьютерного моделирования COMSOL Multiphysics для уточнения полученного результата. Также была разработана модель биологического объекта и игольчатого электрода для исследования влияния кольцевой внешней металлизации на чувствительность системы к проколу сосуда.

Рис. 1. Схема экспериментального стенда (а) и структура игольчатого электрода (б)

Модельное исследование влияния толщины диэлектрического слоя на чувствительность системы. Модельное исследование проводилось для уточнения результатов эксперимента, поэтому разработанная теоретическая модель биообъекта приближена к фантому, использовавшемуся в эксперименте. Структура модели представлена на рис. 1, *а.* Разработанная модель игольчатого электрода также близка к модели игл в экспериментальных исследованиях. Структура модели иглы представлена на рис. 1, *б.* В модельном исследовании рассматривается широкий диапазон возможных геометрических параметров игольчатых электродов, а именно с толщинами диэлектрического слоя от 0,5 до 4,5 мм.

Модельное исследование коаксиальных игл с кольцевой металлизацией. Было проведено исследование на модели, отражающей кровеносный сосуд, окруженный мягкими тканями, для сравнения чувствительности к проколу сосуда игл с кольцевой металлизацией и постоянной площадью контакта со средой и полностью металлизированных игл с переменной площадью контакта. Разработанная модель внешне представляет собой параллелепипед из мягкой ткани, высота которого 30 мм, длина 100 мм, ширина 50 мм. В толще мягких тканей расположен кровеносный сосуд — цилиндр диаметром 5 мм, находящийся на глубине 5 мм, ось которого направлена вдоль длины параллелепипеда. Сосуд заполнен кровью. Удельное сопротивление крови — 1,42 Ом·м, удельное сопротивление мягких тканей — 5 Ом·м (рис. 2, *a*).

Модель игольчатого электрода представлена многослойным полым цилиндром диаметром 2 мм без скоса на конце. Внутренняя часть — металлический полый цилиндр диаметром 0,5 мм и толщиной 0,01 мм. Внешняя часть — металлическое кольцо, толщиной 0,01 мм и высотой h_r . Между ними слой диэлектрика толщиной 1,5 мм (рис. 2, δ).

Исследование проводится для разных размеров кольца: 1 мм, 2 мм, 4 мм и для полностью металлизированной коаксиальной иглы.

Рис. 2. Структура (*a*) и размеры (*б*) модели игольчатого электрода с кольцевой металлизацией

Результаты исследования влияния толщины диэлектрического слоя на чувствительность игольчатого электрода к проколу. Результаты измерений импеданса в ходе эксперимента на разных глубинах для двух типов электродов представлены в табл. 1, 2.

По итогам исследований было выявлено, что в условиях проведенного эксперимента нельзя утверждать, что уменьшение толщины диэлектрического слоя ведет к повышению чувствительности электродной системы.

Таблица 1

Диаметр внут-	Толщина ди-	Глибина врала		Импеданс, Ом	
реннего стрежня, мм	электрического слоя, мм	ния, мм	Измерение 1	Измерение 2	Измерение 3
2	4,25	10	395,83	364,81	382,30
		20	30,01	28,63	29,55
4,5	3	10	383,96	333,21	330,54
		20	26,99	27,14	26,55

Результаты измерения импеданса

Таблица 2

Чувствительность игольчатого электрода к проколу

Диаметр	Толщина диэлек-	Чувствительность б, %			Среднее значение
внутреннего	трического слоя,	Измерение 1	Maxaparus 2	Maxopouvo 3	чувствительности,
стержня, мм	MM		Измерение 2	измерение 5	δ _{cp} , %
2	4,25	92,42	92,15	92,27	92,369
4,5	3	92,97	91,86	91,97	92,64

В дополнение к экспериментальным исследованиям было проведено теоретическое на компьютерной модели. Результаты моделирования приведены на рис. 3. На нем представлен график зависимости чувствительности электродной системы к проколу от толщины диэлектрического слоя. Также для сопоставления результатов экспериментов и теоретических исследований на графиках построены вертикальные линии, соответствующие значениям толщины диэлектрического слоя моделей игл, использовавшихся в эксперименте: 3 и 4 мм.

Комбинируя и сравнивая результаты эксперимента и теоретического исследования можно заключить, что чувствительность электродных систем к проколу с меньшей толщиной диэлектрического слоя выше, чем у систем с большей толщиной. При толщинах менее 3 мм заметен рост чувствительности с уменьшением толщины диэлектрического слоя. При толщинах более 3 мм чувствительность практически не зависит от толщины диэлектрического слоя. Этим можно объяснить результат эксперимента, не показавший явной зависимости.

Рис. 3. Сглаженный график чувствительности электродной системы δ_{сгл}, %, от толщины диэлектрического слоя h_diel, мм. Квадратами обозначены значения чувствительностей, полученные в ходе моделирования

Результаты исследования коаксиальных игл с кольцевой металлизацией. Результаты исследования приведены в табл. 3. На рис. 4 приведен график зависимости чувствительности игольчатых электродов к проколу от размера кольцевой металлизации, а на рис. 5 плотности распределения токов проводимости в среде для игл разной металлизации.

Таблица 3

Палана	Размер внешнего кольца, мм			Игла с полной
Параметры	1	2	4	металлизацией
Сопротивление, измеренное на глубине 4 мм, Ом	4826,1	4789,5	4767,2	4646,2
Сопротивление, измеренное на глубине 7 мм, Ом	1372,4	1366,5	1366,5	1461,3
Чувствительность, б, %	71,563	71,469	71,335	70,701

Результаты исследования влияния размера металлизации

Политехнический молодежный журнал. 2017. № 3

Рис. 4. График зависимостей чувствительности электродной системы Del_Ring, %, от размера внешней металлизации size_i, мм. Del_full_i — уровень, соответствующий чувствительности иглы с полной металлизацией

Итак, проведенные исследования показали, что иглы с меньшей толщиной диэлектрического слоя обладают более высокой чувствительностью к проколу стенки сосуда. Иглы с проводящим внешним кольцом обладают лучшей чувствительностью по сравнению с иглами с полной внешней металлической поверхностью (см. рис. 4). При этом уменьшение размера внешней металлизации ведет к улучшению чувствительности системы к проколу стенки сосуда. Оптимальными являются коаксиальные иглы с внешней кольцевой металлизацией, толщиной диэлектрического слоя 1 мм и размером кольцевой металлизации 1 мм.

Литература

1. *Grimnes S., Martinsen O.G.* Bioimpedance and bioelectricity basics. Oxford, Academic Press, 2008. 488 p.

2. Особенности метода электроимпедансного контроля венепункции / И.А. Кудашов, С.И. Щукин, О.В. Белая, С.Ю. Перов, В.И. Петров // Биомедицинская радиоэлектроника. 2015. № 7. С. 15–19.

3. Online Tissue Discrimination for Transcutaneous Needle Guidance Applications Using Broadband Impedance Spectroscopy / D. Trebbels, F. Fellhauer, M. Jugl, G. Haimerl, M. Min, R. Zengerle // IEEE Transactions on Biomedical Engineering. 2012. Vol. 59. Iss. 2. Article no. 6072257. Pp. 494–503.

4. *Кудашов И.А.* Биотехническая система контроля венепункции на основе измерений электрического импеданса: дис. ... канд. техн. наук. М., Изд-во МГТУ им. Н.Э. Баумана, 2016. 125 с.

5. *Щукин С.И*. Основы взаимодействия физических полей с биообъектами. М.: Изд-во МГТУ имени Н.Э. Баумана, 2002. 66 с.

6. Dielectric Properties of Body Tissues // URL:

http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php (дата обращения 06.06.2016).

Галямов Айрат Зинурович — студент кафедры «Медико-технические информационные технологии», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Потапов Иван Владимирович — студент кафедры «Медико-технические информационные технологии», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — И.А. Кудашов, канд. техн. наук, ассистент кафедры «Медико-технические информационные технологии», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

INVESTIGATING THE CHARACTERISTICS OF COAXIAL NEEDLE ELEC-TRODES FOR VENIPUNCTURE CONTROL BY ELECTRO-IMPEDANCE METHOD

A.Z. Galyamov I.V. Potapov

galyamovaz@student.bmstu.ru i.potapov@student.bmstu.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The study tested coaxial needle electrodes to select the optimal design of the electrode system. We developed models of inhomogeneous media simulating a blood vessel and surrounding soft tissues, as well as models of coaxial needle electrodes. Moreover, we did an experi- ment to evaluate the influence of the geometric parame- ters of needle electrodes on their characteristics. Finally,	Bioimpedance, puncture, needle electrode, coaxial needle, electrode system
we carried out a model study of needle electrodes in	© Bauman Moscow State Technical
various versions for the evaluation of their characteristics	University, 2017

References

- Grimnes S., Martinsen O.G. Bioimpedance and bioelectricity basics. Oxford, Academic Press, 2008. 488 p.
- [2] Kudashov I.A., Shchukin S.I., Belaya O.V., Perov S.Yu., Petrov V.I. The features of the controling venipuncture electrical impedance method. *Biomeditsinskaya radioelektronika* [Biomedical Radioelectronics], 2015, no. 7, pp. 15–19 (in Russ.).
- [3] Trebbels D., Fellhauer F., Jugl M., Haimerl G., Min M., Zengerle R. Online Tissue Discrimination for Transcutaneous Needle Guidance Applications Using Broadband Impedance Spectroscopy. *IEEE Transactions on Biomedical Engineering*, 2012, vol. 59, iss. 2, article no. 6072257, pp. 494–503.
- [4] Kudashov I.A. Biotekhnicheskaya sistema kontrolya venepunktsii na osnove izmereniy elektricheskogo impedansa. Diss. kand. tekhn. nauk [Biotechnical control system of venipuncture, on the basis of measurements of electrical impedance. Cand. tech. sci. diss.], Moscow, Bauman MSTU Publ., 2016. 125 p. (in Russ.).
- [5] Shchukin C.I. Osnovy vzaimodeystviya fizicheskikh poley s bioob"ektami [Bases of interaction of physical fields with biological objects]. Moscow, Bauman MSTU Publ., 2002. 66 p. (in Russ.).
- [6] Dielectric Properties of Body Tissues. Niremf: website. URL: http://niremf.ifac.cnr.it/tissprop/htmlclie/htmlclie.php (accessed 06.06.2016).

Galyamov A.Z. — student of the Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russian Federation.

Potapov I.V. — student of the Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — I.A Kudashov, Cand. Sc. (Eng.), Assistant of the Department of Medical and Technical Information Technology, Bauman Moscow State Technical University, Moscow, Russian Federation.