DOI: 10.18698/2541-8009-2021-06-709

АНОМАЛИИ ГРАВИТАЦИОННОГО ПОЛЯ ЗЕМЛИ

В ПРИКЛАДНЫХ ЗАДАЧАХ БАЛЛИСТИКИ

Д.С. Колесникова

УДК 531.51

kolesnikovads@student.bmstu.ru SPIN-код: 9804-9257

МГТУ им. Н.Э. Баумана, Москва, Российская Федераци

Аннотация	Ключевые слова
Аннотация Рассмотрены наиболее распространенные в задачах баллистики гравитационные модели, используемые при расчетах траекторий движения летательных аппаратов: центральное гравитационное поле, гравитационная модель ПЗ-90, модель, нормальная «по Красовскому». Проведен сравнительный анализ	Ключевые слова Полный вектор напряженности гравитационного поля, аномаль- ное гравитационные поле, обще- земной эллипсоид, эллипсоид Красовского, центральное гра- витационное поле, модель фигу-
различных гравитационных моделей Земли с разной степенью точности описывающих поле тяжести. Проанализировано аномальное гравитационное поле и выявлены наиболее характерные области, в кото- рых влиянием гравитационного поля не рекоменду- ется пренебрегать. Показано влияние аномального гравитационного поля на результаты моделирова- ния гравитационных моделей. Проведена оценка методических подрешностей моделей зравитацион-	ры Земли, математическое мо- делирование, траектория лета- тельного аппарата
метооических погрешностеи моделей гривитацион- ного поля. Сформированы рекомендации по целесооб-	Поступила в редакцию 07.06.2021
разности использования той или иной модели.	© МГТУ им. Н.Э. Баумана, 2021

Независимо от кинематики и динамики относительного и абсолютного движений основными факторами, учитываемыми в инерциальном наведении и навигации на Земле, являются конфигурация и гравитационное поле земного геоида — эквипотенциальной поверхности гравитационного поля Земли. В зависимости от степени аппроксимации земной поверхности существует множество моделей, с помощью которых можно наиболее точно оценить гравитационное поле.

Целью данной работы является анализ различных гравитационных моделей, учитывающих и не учитывающих влияние нерегулярных составляющих на формирование полного вектора напряженности гравитационного поля.

Для достижения поставленной в работе цели были решены следующие задачи:

 обзор и анализ существующих и широко используемых в задачах баллистики гравитационных моделей;

 – создание математических моделей гравитационного поля и сравнение их между собой:

- центральное гравитационное поле (модель Земли шар);
- гравитационная модель ПЗ-90 (модель Земли двухосный эллипсоид);
- нормальная «по Красовскому» (модель Земли двухосный эллипсоид);

– оценка погрешностей вычисления ускорения силы тяжести по полученным моделям гравитационного поля, их анализ и сравнение.

Рис. 1. Геометрические элементы эллипса

Общеземной эллипсоид по параметрам Земли 1990 г. По аналогии вращения Земли вокруг своей оси в качестве модели, описывающей форму земной поверхности, рассматривают эллипсоид. Поверхность земного эллипсоида получена путем вращения эллипса вокруг его малой оси. Как и эллипс, эллипсоид определяется размерами его большой *a* и малой *b* полуоси (рис. 1).

Для получения числовых характеристик общеземного эллипсоида (ОЗЭ) проводят большое количество гравиметрических, геодезических и спутниковых измерений.

Потенциал силы тяжести можно представить в виде бесконечного ряда так называемых сферических функций. Гравитационный потенциал описывается следующей формулой [1]:

$$W = \frac{fM}{\rho} \left[1 - \sum_{n=2}^{\infty} \left(\frac{a}{n} \right)^n J_n^0 P_n(\sin\varphi) + \sum_{n=2}^{\infty} \sum_{m=0}^n P_n^m(\sin\varphi) (A_n^m \cos m\lambda + B_n^m \sin m\lambda) \right] + \frac{\Omega_3^2}{2} \rho^2 \cos\varphi.$$
(1)

где $f = (6,67 \pm 0,01) \cdot 10^{-11}$ — гравитационная постоянная м²/(кг·с²); M — масса Земли, кг; ρ — радиус-вектор рассматриваемой точки, м; a — большая полуось, м; $n = 2, ..., \infty$ — индекс суммирования (порядок присоединённых функций Лежандра); m = 0, ..., n — индекс суммирования (индекс присоединённых функций Лежандра); φ — геоцентрическая широта рассматриваемой точки, рад; J_n^0 — зональные гармоники (A_{n0}); $P_n(\sin\varphi) = P_{n0}(\sin\varphi)$ — главные сферические функции (основные многочлены Лежандра); $P_n^m(\sin\varphi)$ — присоединенные сферические функции порядка n с индексом m; λ — геоцентрическая долгота рассматриваемой точки, рад; A_n^m — тессеральные гармоники порядка n с индексом m; B_n^m — секторальные гармоники порядка n с индексом m; $\Omega_3 = 7,292 \cdot 10^{-5}$ — угловая скорость вращения Земли, c^{-1} .

Представим формулу (1) в более удобном виде и проанализируем ее слагаемые:

$$W = \frac{fM}{\rho} - \frac{fM}{\rho} \sum_{n=2}^{\infty} \left(\frac{a}{n}\right)^n J_n^0 P_n(\sin\varphi) + \frac{fM}{\rho} \sum_{n=2}^{\infty} \sum_{m=0}^n P_n^m(\sin\varphi) (A_n^m \cos m\lambda + B_n^m \sin m\lambda) + \frac{\Omega_3^2}{2} \rho^2 \cos\varphi.$$

В данной формуле лишь первые два и последнее слагаемые являются регулярными функциями. Третье слагаемое, зависящее от широты и долготы, представляет собой нерегулярную функцию. Коэффициенты разложения в этом слагаемом $P_n(\sin \varphi)$, A_n^m , B_n^m называют зональными, секторальными и тессераль-

ными гармониками [2]. На рис. 2 закрашены области, в которых функции принимают отрицательные значения, не закрашены — положительные. На линиях сферические функции обращаются в ноль. Для понимания физического смысла сферических функций рекомендуется обратиться к рис. 3.

Рис. 2. Физический смысл сферических функций:

a — зональные функции A_n^0 ; b — тессеральные функции A_0^m ; b — секторальные функции A_n^m

Рис. 3. К понятию зональных, тессеральных и секторальных функций: *a* — зональная функция A_5^0 ; *b* — тессеральная функция A_5^5 ; *в* — секторальная функция A_5^3

В ходе вычисления зональных гравитационных моментов было выявлено, что один из зональных гравитационных моментов много больше остальных. Это послужило причиной, по которой гравитационный потенциал стали подразделять на нормальный и аномальный, который может быть получен путем вычитания из реального гравитационного поля нормальной составляющей.

Согласно теории инерциальной навигации [3], ускорение свободного падения на поверхности ОЗЭ вычисляют как производную потенциальных функций нормального и аномального гравитационных полей:

$$g_0 = \gamma_0 + \Delta g,$$

где γ_0 — ускорение нормальной силы тяжести, определяемое нормальным потенциалом ОЗЭ (методика расчета представлена в [4]); Δg — поправка к значению нормальной силы тяжести, характеризующая аномальное гравитационное поле Земли.

Политехнический молодежный журнал. 2021. № 06

Аномалиями силы тяжести называют отклонение фактического вектора ускорения силы тяжести от некоторой принятой нормы. Их наличие обусловлено влиянием неоднородности рельефа местности, а также неравномерностью распределения массы Земли под рассматриваемой точкой. Очевидно, что при учете этих факторов количество рассматриваемых членов в разложении (1) увеличивается.

Рис. 4. Гравитационные аномалии (согласно GGM01): *а* — Европа и Африка; *б* — Америка; *в* — Азия

Физически аномалии представляют собой локальные нелатеральные неоднородности Земли. На рис. 4 представлены гравитационные аномалии согласно модели GRACE Gravity Model (01) с использованием 70 гармоник [5]. На рис. 5 представлены гравитационные аномалии согласно модели GRACE Gravity Model (05) с использованием 360 гармоник [5].

Рис. 5. Гравитационные аномалии (согласно GGM05), мГал (10^{-5} м/c^2)

На гравиметрических картах различных районов Земли видно, что поле слабых отрицательных и положительных аномалий охватывает большую часть

низменностей и невысоких равнин Европы, Азии и Америки. Наибольшие значения аномалии имеют место в гористой местности, особенно в Районах Тибета и Памира [3]. В основном аномалии составляют [–100; 100] мГал (10⁻⁵ м/с²) [5].

В ряде практических приложений широко применяют модели в виде потенциала притяжения точечных масс. Планетарная модель аномального ГПЗ в виде потенциала притяжения 60 точечных масс (ТМ-60) получена аппроксимацией возмущающего потенциала, соответствующего модели ПЗ-2002/70с до 36-й степени [4].

С изменением высоты H (рис. 6) вектор силы тяжести массы m, помещенной в точку P, изменяется как по величине, так и по направлению, если считать, что точка P вращается вместе с Землей с угловой скоростью Ω_3 .

Рис. 6. Геометрические величины, используемые при выводе проекций ускорения свободного падения на оси стартовой системы координат:

 r_p — модуль радиус-вектора, проведенного в рассматриваемую точку, м; $r_{P'}$ — модуль радиусвектора, проведенного из геометрического центра сфероида в точку P', м; H — высота точки над поверхностью сфероида, м

Следующая система уравнений [3] содержит проекции ускорения свободного падения на оси стартовой системы координат (СтСК [6]):

$$\begin{cases} g_{x_c} = \Omega_3^2 \left[H \cos \varphi + r'_p \cos \varphi' \left(1 - \frac{{r'_p}^2}{r_p^2} \right) \right] \sin \varphi; \\ g_{y_c} = g_0 \frac{r'_p}{r_p} - \Omega_3^2 \left[H \cos \varphi + r'_p \cos \varphi' \left(1 - \frac{{r'_p}^2}{r_p^2} \right) \right] \cos \varphi; \\ g_{z_c} = \sqrt{g_0 \frac{{r'_p}^4}{r_p^4} + \Omega_3^4 (r'_p + H)^2 + 2\Omega_3^2 g_0 \frac{{r'_p}^2}{(R_3^2 + H)} (r'_p + H) - g_0^2}, \end{cases}$$

где g_0 — модуль вектора сил ньютоновского тяготения Земли.

Для анализа гравитационной модели произведено сравнение значений ускорения свободного падения для различного геодезического положения точки наблюдения. На рис. 7 представлены зависимости проекций ускорения свободного падения на оси стартовой системы координат в зависимости от геодезической широты *B* и высоты *H* рассматриваемой точки при фиксированной долготе $L = 0^{\circ}$ для гравитационной модели ОЗЭ.

Из анализа рис. 7 видно, что значение ускорения свободного падения в проекции на ось x_c стартовой системы координат увеличивается с ростом вы-

Политехнический молодежный журнал. 2021. № 06

соты рассматриваемой точки. При этом наблюдается строгая периодичность, в связи с чем можно сделать вид, что наличие гравитационных аномалий не влияет существенным образом на эту составляющую от силы тяжести. Значение модуля проекции силы тяжести на ось y_c стартовой системы координат уменьшается существенным образом для широт $B \in [-90; 90]^\circ$. При этом наблюдается наличие множества локальных выступов и изгибов, что характеризует влияние более строгого описания нормального гравитационного поля и гравитационных аномалий.

Рис. 7. Зависимость проекции силы тяжести на ось x_c (*a*) и на ось y_c (*б*) стартовой системы координат от широты и высоты рассматриваемой точки

На рис. 8 представлены зависимости проекций ускорения свободного падения на оси стартовой системы координат в зависимости от геодезической широты и долготы рассматриваемой точки при фиксированной высоте H = 10 км для гравитационной модели ОЗЭ.

Рис. 8. Зависимость проекции силы тяжести на ось $x_c(a)$ на ось $y_c(b)$ стартовой системы координат от широты и долготы рассматриваемой точки

Из анализа рис. 8 видно, что изменение долготы рассматриваемой точки в зависимости от широты при фиксированной высоте не влияет на значение горизонтальной проекции силы тяжести. Что касается вертикальной проекции, при увеличении долготы от значения -180° значение g_{y_c} постепенно увеличивается по модулю, однако не ведет себя одинаковым образом для различных значений долгот рассматриваемой точки. Это обусловлено небольшим, но заметным влиянием гравитационных аномалий.

Также следует отметить, что используемый в данной модели эллипсоид ПЗ-90 является референц-эллипсоидом, разработанным на территории Российской Федерации. Это дает основание полагать, что геодезические координаты, характерные для других государств, могут давать значительную погрешность. В некоторых случаях эта величина составляет порядка 10 м.

Модель, нормальная «по Красовскому». В данной модели рассматривается определение напряженности регуляризированного поля тяготения Земли. Аномальной составляющей пренебрегают.

Аналитические выражения проекций вектора напряженности поля тяготения Земли на оси геоцентрической сопровождающей системы координат (ГЦС) [7]

Политехнический молодежный журнал. 2021. № 06

получены в результате разложения соответствующих функций в достаточно быстро сходящиеся ряды по степеням эксцентриситета. Высокая скорость сходимости обусловлена малостью эксцентриситета Земли *е*. При разложении с точностью до четвертой степени эти выражения приобретают следующий вид:

$$\begin{cases} g_{x_{\text{THC}}} = \frac{g_e}{2} (q_{\text{rp}} - e^2) \left(\frac{a}{b}\right)^4 \sin(2\varphi_{\text{rp}}) \left(1 + e^2 \frac{7e^2 - 30q_{\text{rp}}}{14(q_{\text{rp}} - e^2)}\right) \times \\ \times \left(1 + \left(\frac{-21e^2 + 30q_{\text{rp}}}{14(q_{\text{rp}} - e^2)} + \sin^2 \varphi_{\text{rp}} \frac{7e^2 - 10q_{\text{rp}}}{2(q_{\text{rp}} - e^2)}\right) e^2 \left(\frac{a}{b}\right)^2 \right); \\ g_{y_{\text{THC}}} = -g_e \left(\frac{a}{b}\right)^2 \left\{1 - \frac{e^2}{2} - \frac{e^4}{8} + q_{\text{rp}} \left(\frac{3}{2} - \frac{15}{28}e^2\right) + \\ + \left[\frac{e^2}{2} - \frac{e^4}{4} + q_{\text{rp}} \left(\frac{3}{2} - \frac{15}{28}e^2\right) - \sin^2 \varphi_{\text{rp}} \left(\frac{3e^2}{2} - \frac{3e^4}{4} + q_{\text{rp}} \left(-\frac{3}{2} - \frac{45}{14}e^2\right)\right)\right] \left(\frac{a}{b}\right)^2 \right\}; \\ g_{z_{\text{THC}}} = 0. \end{cases}$$

$$(2)$$

где g_e — ускорение свободного падения на экваторе, м/с²; $q_{rp} = \Omega_3^2 a / g_e$ — отношение центробежной силы, возникающей вследствие вращения Земли, к силе тяжести на экваторе; b — малая полуось эллипсоида; e — эксцентриситет Земли; $\varphi_{rp} = \operatorname{arctg}\left(\frac{b}{a}\operatorname{tg} B\right)$ — географическая широта рассматриваемой точки.

Система (2) в проекциях на оси географической системы координат (ГСС) имеет следующий вид [5]:

$$\begin{cases} g_{x_{\rm rcc}} = g'_{x_{\rm ruc}} \cos(B - \phi_{\rm rp}) - g'_{y_{\rm ruc}} \sin(B - \phi_{\rm rp}); \\ g_{y_{\rm rcc}} = g'_{x_{\rm ruc}} \sin(B - \phi_{\rm rp}) + g'_{y_{\rm ruc}} \cos(B - \phi_{\rm rp}); \\ g_{z_{\rm rcc}} = 0. \end{cases}$$
(3)

Для перехода в стартовую систему координат необходимо вектор (3) умножить справа на матрицу перехода от ГССК к СтСК [6].

Система (2) получена в результате упрощения громоздких выражений, представленных в [3]. Относительная погрешность при вычислении проекций вектора напряженности поля тяготения Земли по упрощенным формулам в процентах составляет 0,00536 % для проекции на ось $x_{\Gamma I \downarrow C}$ и 0,000488 % для проекции на ось $y_{\Gamma I \downarrow C}$.

Для анализа гравитационной модели выполнено сравнение значений ускорения свободного падения для различного геодезического положения точки наблюдения. На рис. 9 представлены зависимости проекций ускорения свободного падения на оси стартовой системы координат от геодезической широты и высоты рассматриваемой точки при фиксированной долготе $L = 0^{\circ}$ для гравитационной модели Красовского.

б

Рис. 9. Зависимость проекции силы тяжести на ось $y_c(a)$ и на ось $x_c(b)$ стартовой системы координат от широты и высоты рассматриваемой точки

Если сравнить данные, изображенные на рис. 9 с подобными из рис. 7 для модели ОЗЭ, то видно, на каких широтах положения рассматриваемой точки разница в выборе гравитационной модели будет существенна. Это характерно для $B \in [-180;90]^{\circ}$ и $B \in [90;180]^{\circ}$.

На рис. 10 представлены зависимости проекций ускорения свободного падения на оси стартовой системы координат в зависимости от геодезической широты и долготы рассматриваемой точки при фиксированной высоте *H* = 10 км для гравитационной модели Красовского.

Из анализа рис. 10 видно, что изменение долготы рассматриваемой точки в зависимости от широты при фиксированной высоте не влияет на значение силы тяжести. Это обусловлено тем фактом, что в данной модели отсутствуют члены, зависящие от долготы рассматриваемой точки, соответственно отсутствует влияние гравитационных аномалий, которые обычно представляют собой тессеральные гармоники (см. рис. 2).

Рис. 10. Зависимость проекции силы тяжести на ось *y*_c (*a*) и на ось *x*_c (*б*) стартовой системы координат от широты и долготы рассматриваемой точки

Модель сферической Земли с центральным гравитационным полем. При составлении математической модели движения ЛА, описывающей пространственную траекторию применительно к сферической модели Земли, ускорение свободного падения в первом приближении представляют направленным к центру Земли и изменяющимся по закону [8]:

$$g = g_0 \left(\frac{R_3}{r}\right)^2.$$

Данная величина посредством разложения в ряд с последующим отбрасыванием членов может быть записана в виде

$$g(H) \approx g_0 \left(1 - 2 \frac{H}{R_e} \right),$$

где R_e — радиус Земли на экваторе; $2g_0 H/R_e$ — поправка за «свободный воздух» (представляет собой величину, которую необходимо скорректировать, чтобы привести измеренные значения к поверхности геоида). Для сферической модели Земли основной геопостоянной величиной является радиус земной сферы. Он рассчитывается, как среднее арифметическое полуосей принятого к рассмотрению эллипсоида. В данной задаче в качестве радиуса Земли примем значение среднего радиуса эллипсоида Бесселя, равного 6370291,091 м [9]. В проекциях на оси прямоугольной стартовой системы координат выражения для вычисления вектора напряженности поля тяготения примет вид

$$\begin{cases} g_{X_c} = g_0 \sin \gamma; \\ g_{Y_c} = g_0 \cos \gamma; \\ g_{Z_c} = 0, \end{cases}$$
(4)

где $\gamma = \operatorname{arctg}\left(\frac{x}{y+R_3}\right)$ — полярный угол, град; x, y — координаты рассматри-

ваемой точки в нормальной земной системе координат [6]

Величину g_0 из (4) рассчитывают согласно формуле

$$g_0 = g_{0,2}(1 + \sin^2\beta).$$

Здесь $\beta = 0,00528001$ — коэффициент Клеро [10]; $g_{03} = 9,78034$ м/с² — значение ускорения свободного падения на экваторе.

Поскольку в данной модели отсутствует зависимость ускорения силы тяжести от геодезических координат, рассмотрим изменение указанной величины в зависимости от изменения положения точки в стартовой системе координат.

Из анализа рис. 11 видно, что зависимость, которая в других моделях описывается сложной периодической функцией (см. рис. 7–10) в данной модели представлена в упрощенном виде, что дает большее значение рассогласования с другими ранее описанными моделями. Горизонтальная проекция ускорения силы тяжести меняется линейно с увеличением высоты. В других моделях данная величина имела периодический нелинейный характер.

Разница в значениях ускорения свободного падения по сравнению с рассматриваемыми ранее моделями на некоторых широтах может составлять порядка 0,1 м/с², что является весьма существенным.

Проанализировав полученные результаты, можно сделать следующие выводы:

– для моделей ПЗ-90 и эллипсоида Красовского с ростом высоты проекция ускорения свободного падения на ось x_c увеличивается, причем максимального значения, равного примерно $8 \cdot 10^{-5}$ м/с², достигает на широтах $\pm 45^{\circ}$ на высоте 10 км, а это меньше, чем методические погрешности рассматриваемых моделей, поэтому на высотах до 10 км ею можно пренебречь;

– для модели сферического центрального гравитационного поля проекция ускорения свободного падения на ось x_c достигает примерно 1,6 · 10⁻² м/с² на высоте 10 км, а таким значением в рамках рассмотренной модели пренебречь нельзя;

Рис. 11. Зависимость проекции силы тяжести на ось $y_c(a)$ и на ось $x_c(b)$ стартовой системы координат от высоты рассматриваемой точки

– стоит внимательно относиться к выбору модели гравитационного поля в задачах, решаемых в географических районах, где наблюдаются гравитационные аномалии, поскольку погрешность определения гравитационного ускорения в них может достигать примерно $2 \cdot 10^{-2}$ м/с² по сравнению с другими более прощенными моделями (см. рис. 7, рис. 9);

 – для предварительных расчетов полета баллистических ракет на активном участке траектории рекомендуется использование центрального гравитационного поля, которое обеспечивает оперативность расчета при сравнительно точных результатах;

 – для ракет сравнительно малых дальностей (до 500 км), для которых требуется достижение высокой точности расчетов при условии наилучшей оперативности расчетов, рекомендуется использование гравитационной модели, нормальной «по Красовскому»;

 – для баллистических ракет, дальность действия которых превышает 5500 км на пассивном участке траектории, рекомендуется использование гравитационной модели ПЗ-90, наиболее точным образом описывающей гравитационное поле Земли.

Литература

- [1] Лысенко Л.Н. Наведение и навигация баллистических ракет. М., Изд-во МГТУ им. Н.Э. Баумана, 2007.
- [2] Грушинский Н.П. Теория фигуры Земли. М., Физматгиз, 1963.
- [3] Захарин М.И., Захарин Ф.М. Кинематика инерциальных систем навигации. М., Машиностроение, 1968.
- [4] Параметры Земли 1990 года (ПЗ-90.11). М., Военно-топографическое управление генерального штаба вооруженных сил РФ, 2020.
- [5] GRACE gravity map image gallery. *csr.utexas.edu: веб-сайт.* URL: http://www2.csr.utexas. edu/ grace/gallery/gravity (дата обращения: 15.05.2021).
- [6] ГОСТ 20058-80. Динамика летательных аппаратов в атмосфере. Термины, определения и обозначения. М., Изд-во стандартов, 1981.
- [7] Андреев В.Д. Теория инерциальной навигации. Автономные системы. М., Наука, 1966.
- [8] Дмитриевский А.А., Лысенко Л.Н. Внешняя баллистика. М., Машиностроение, 2005.
- [9] Комаровский Ю.А. Использование различных референц эллипсоидов в судовождении. Владивосток, ДВГМА, 1990.
- [10] Черноботарев Г.А. Аналитические и численные методы небесной механики. М., Наука, 1965.

Колесникова Дарья Сергеевна — студентка кафедры «Динамика и управление полетом ракет и космических аппаратов», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — Клишин Алексей Николаевич, доцент кафедры «Динамика и управление полетом ракет и космических аппаратов» МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Ссылку на эту статью просим оформлять следующим образом:

Колесникова Д.С. Аномалии гравитационного поля земли в прикладных задачах баллистики. Политехнический молодежный журнал, 2021, № 06(59). http://dx.doi.org/ 10.18698/ 2541-8009-2021-06-709

ANOMALIES OF THE EARTH'S GRAVITATIONAL FIELD IN APPLIED PROBLEMS OF BALLISTICS

D.S. Kolesnikova

kolesnikovads@student.bmstu.ru SPIN-code: 9804-9257

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The paper considers the most common gravitational models in ballistics problems used in calculating the trajectories of aircraft movement: the central gravita- tional field, the PZ-90 gravitational model, the Krasov- sky normal model. A comparative analysis of various Earth's gravitational models with varying degrees of accuracy describing the gravity field is carried out. The anomalous gravitational field is analyzed and the most characteristic areas are identified, in which it is not recommended to neglect the gravitational field influ- ence. The influence is shown of anomalous gravitational field on the results of modeling gravity models. The estimation of the methodological errors of the gravita-	Full vector of the gravitational field strength, anomalous gravitational field, Earth ellipsoid, Krasovsky ellipsoid, central gravitational field, model of the Earth's figure, mathe- matical modeling, trajectory of an aircraft
tional field models is carried out. Recommendations on	Received 07.06.2021
the appropriateness of using a particular model have	© Bauman Moscow State Technical
been formulated.	University, 2021

References

- [1] Lysenko L.N. Navedenie i navedenie ballisticheskikh raket [Targeting and navigation of ballistic rockets]. Moscow, Bauman MSTU Publ., 2007 (in Russ.).
- [2] Grushinskiy N.P. Teoriya figury Zemli [Theory of Earth figure]. Moscow, Fizmatgiz Publ., 1963 (in Russ.).
- [3] Zakharin M.I., Zakharin F.M. Kinematika inertsial'nykh sistem navigatsii [Kinematics of inertial navigation systems]. Moscow, Mashinostroenie Publ., 1968 (in Russ.).
- [4] Parametry Zemli 1990 goda (PZ-90.11) [Earth parameters of 1990 (PZ-90.11)]. Moscow, Voenno-topograficheskoe upravlenie general'nogo shtaba vooruzhennykh sil RF Publ., 2020 (in Russ.).
- [5] GRACE gravity map image gallery. *csr.utexas.edu: website*. URL: http://www2.csr.utexas. edu/ grace/gallery/gravity (accessed: 15.05.2021).
- [6] GOST 20058-80. Dinamika letatel'nykh apparatov v atmosfere. Terminy, opredeleniya i oboznacheniya [State standard 20058-80. Aircraft dynamics in atmosphere. Terms, definitions and symbols]. Moscow, Izd-vo standartov Publ., 1981 (in Russ.).
- [7] Andreev V.D. Teoriya inertsial'noy navigatsii. Avtonomnye sistemy [Theory of inertial navigation. Autonomous systems]. Moscow, Nauka Publ., 1966 (in Russ.).
- [8] Dmitrievskiy A.A., Lysenko L.N. Vneshnyaya ballistika [External ballistics]. Moscow, Mashinostroenie Publ., 2005 (in Russ.).

Anomalies of the Earth's gravitational field in applied problems of ballistics

- Komarovskiy Yu.A. Ispol'zovanie razlichnykh referents ellipsoidov v sudovozhdenii [Using of different references – ellipsoids in ship navigation]. Vladivostok, DVGMA Publ., 1990 (in Russ.).
- [10] Chernobotarev G.A. Analiticheskie i chislennye metody nebesnoy mekhaniki [Analitical and numerical methods of celestial mechanics]. Moscow, Nauka Publ., 1965 (in Russ.).

Kolesnikova D.S. — Student, Department of Dynamics and Flight Control of Rockets and Spacecraft, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — Klishin A.N., Assoc. Professor, Department of Dynamics and Flight Control of Rockets and Spacecraft, Bauman Moscow State Technical University, Moscow, Russian Federation.

Please cite this article in English as:

Kolesnikova D.S. Anomalies of the Earth's gravitational field in applied problems of ballistics. *Politekhnicheskiy molodezhnyy zhurnal* [Politechnical student journal], 2021, no. 06(59). http://dx.doi.org/ 10.18698/ 2541-8009-2021-06-709.html (in Russ.).