УДК 004.652.4

ИСПОЛЬЗОВАНИЕ РЕЛЯЦИОННЫХ БАЗ ДАННЫХ В ПРОЕКТИРОВАНИИ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

А.Ю. Заварыко

А.А. Старцев

zavaryykoayu@student.bmstu.ru SPIN-код: 9064-9779 startsevaa@student.bmstu.ru SPIN-код: 9382-6546

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
В настоящее время все крупные предприятия нуждаются в хранении, обработке и использовании больших объемов информации. Для этого создаются базы данных, которые ускоряют и упрощают процесс работы с информацией. Выполнен анализ программного обеспечения, использующегося при подготовке современного производства изделий ракетно-космической техники для проектирования технологических процессов. Приведен пример сравнения работы востребованных в настоящее время программных продуктов, реализующих системы управления базами данных. Рассмотрена реляционная база данных, выполненная для отдела одного из предприятий ракетно-космической промышленности. Сделан вывод о	Система управления базами данных, Microsoft Access, реляци- онная база данных, SQL Server, подготовка производства, ав- томатизация производства, информационно-коммуникацион- ные технологии, администриро- вание серверов
преимуществах использования спроектированной	Поступила в редакцию 28.09.2020
базы данных.	© МГТУ им. Н.Э. Баумана, 2020

Введение. В современном мире ни одна крупная фирма не обходится без базы данных. Под базой данных принято понимать организованную совокупность данных, предназначенную для долговременного хранения и постоянного применения [1].

Для разработки программ и систем программ, работающих с базами данных, используются специальные средства — системы управления базами данных (СУБД). Система управления базами данных включает, как правило, специальный язык программирования и все прочие средства, необходимые для разработки указанных программ [2].

Обычно СУБД различают по используемой модели данных. Так, базы данных, спроектированные с использованием реляционной модели данных, называют реляционными. Системы управления базами данных помогают отсортировать информацию, а также связать базы данных между собой, при этом представив отчет об изменениях и зарегистрированных событиях [3]. В настоящее время наиболее известными СУБД являются: Oracle Database, MS SQL Server, MySQL (MariaDB) и ACCESS. Последнее приложение входит в состав профессионального офисного пакета Microsoft Office. Это современные системы с большими возможностями, предназначенные для разработки сложных программных комплексов [4, 5].

Сравнительная характеристика MS Access и SQL Server. Система управления базами данных представляет собой комплекс программных и лингвистических средств общего или специального назначения, реализующий поддержку создания баз данных, централизованного управления и организации доступа к ним различных пользователей в условиях принятой технологии обработки данных [4, 5].

Система управления базами данных — это программное средство, позволяющее работать с базами данных, которое обеспечивает:

- создание баз данных;
- описание и сжатие данных базы;
- манипулирование данными;
- физическое размещение и сортировку записей;
- защиту от сбоев, поддержку целостности данных и их восстановление;
- работу с транзакциями и файлами;
- безопасность данных.

Несмотря на существование множества различных СУБД, для сравнения выберем базы MS Access и SQL Server (см. таблицу).

Видно, что с точки зрения масштабности использования SQL Server 2005 превосходит MS Access, поскольку может хранить и больший объем информации, и использоваться на различных, как малых, так и больших по масштабам предприятиях. MS Access часто применяют для обучения и используют в работе небольших организаций, так как она очень удобна в использовании и не требует особых знаний, времени на ее освоение требуется обычно мало [6, 7].

О характеристиках и преимуществах той или иной СУБД можно говорить много и долго. Однако рассмотрим еще такие характеристики, как управляемость, надежность, безопасность, доступность, масштабируемость.

В отношении управляемости, доступности и удобности работы выделяется Access, он легок в использовании, обладает удобным интерфейсом, не требует от человека особых знаний, освоить его не составит труда даже людям, впервые узнавшим о базах данных [7–9].

В отношении безопасности в Access по этому поводу все достаточно просто, в своей работе он предусматривает несколько методов защиты:

- административный метод;
- маскировка;
- защита на уровне доменных политик;
- защита с помощью макроса AutoExec и блокировки Shift;

– защита с использованием пароля базы данных (самая простая защита, каждый пользователь с легкостью сможет ее организовать);

– Защита с помощью терминального доступа к серверу (самый высокий уровень защиты в Access, так как клиентская часть и база с таблицами находится на сервере).

Характе-	База		
ристика	MS Access	SQL Server	
	Настольная система управления	Система управления реляционными база-	
	реляционными базами данных	ми данных (СУБД). Основной используе-	
	(СУБД), предназначенная для	мый язык запросов — Transact SQL. Ис-	
	работы на автономном персо-	пользуется для работы с базами данных	
Назначение	нальном компьютере (ПК) или	размером от персональных до крупных баз	
ыче	локальной вычислительной сети	данных масштаба предприятия	
3H6	под управлением семейства опе-		
На	рационных систем Microsoft		
	Windows. Обычно используется		
	на малых предприятиях, для не-		
	большого количества информа-		
	ции		
	• Проектирование базовых объ-	SQL Server представляет собой интегриро-	
	ектов — двумерные таблицы с	ванное решение по управлению и анализу	
	полями разных типов данных.	данных, которое поможет организациям	
	• Создание связей между табли-	различного масштаба:	
	цами с поддержкой целостности	• строить и развертывать промышленные	
	данных, каскадного обновления	приложения, которые являются более без-	
	полей и каскадного удаления	опасными, масштабируемыми и надежны-	
и	записей.	ми, а также управлять ими;	
Основные возможности	• Ввод, хранение, просмотр, сор-	• увеличивать продуктивность информа-	
жно	тировка, изменение и выборка	ционных технологий, уменьшая сложность	
Основные	данных из таблиц с использова-	построения, развертывания приложений	
0 i	нием различных средств кон-	по работе с базами данных и управления	
Г	троля информации, индексиро-	ими;	
	вания таблиц и аппарата алгебры	• разделять данные между платформами,	
	логики.	приложениями и устройствами для облег-	
	• Создание, модификация и ис-	чения соединения внутренних и внешних	
	пользование производных объек-	систем;	
	тов (запросов, форм и отчетов)	• контролировать стоимость, не жертвуя	
		качеством выполнения, доступностью,	
		масштабируемостью и безопасностью	

Сравнительная характеристика возможностей MS Access и и SQL Server

Безопасность в SQL Server обеспечивают:

- авторизация и аутентификация;
- схемы, не имеющие отношения к пользователям;
- роли;
- выполнение кода с минимальными привилегиями;

Политехнический молодежный журнал. 2020. № 10

- шифрование трафика и данных;
- аудит и защита метаданных;
- поддержка открытых ключей;
- поддержка Kerberos;
- службы сертификатов [9-11].

Сравнив эти две СУБД по некоторым критериям, можно заметить, что база SQL Server — более функциональная, надежная и безопасная система, которая подходит для использования, как на малых предприятиях и достаточно больших масштабов.

База Access используется для решения более простых задач и достаточно небольших объемов данных, выполняя свои функции реляционной системы управления базами данных.

Проанализировав цели разрабатываемого проекта и технические возможности, интерфейс и простоту использования двух СУБД, мы остановили свой выбор на MS Access, поскольку мы изучали данную среду в учебном курсе.

Принцип действия и возможности спроектированной базы данных. База данных технологической оснастки была создана в программе MS Access для отдела одного из ведущих предприятий космической промышленности, который занимается пневмовакуумными испытаниями. Для создания и заполнения базы данных была использована информация, полученная на предприятии.

В таблицу данных по технологической оснастке входят такие параметры, как номер изделия, номер документа, диаметр внутренний, диаметр внешний, радиус скругления, номер цеха и тип чертежа.

На схеме данных (рис. 1) отражены пиктограммы таблиц, составляющих спроектированную БД: serchtab и «Чертежи». Здесь осуществляется связь между таблицей searchtab, в которой находится основная информация о технологической оснастке и таблицей «Чертежи», в которой размещаются чертежи оснастки. Связь осуществляется по полю «Код».

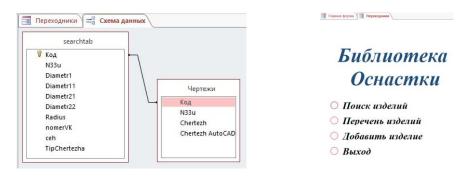


Рис. 1. Вкладка «Схема данных»

Рис. 2. Вкладка «Главная форма»

В процессе создания были использованы объекты MS Access: таблицы, формы, запросы, модули [6, 11].

При открытии базы данных мы попадаем на вкладку «Главная форма» (рис. 2).

Использование реляционных баз данных в проектировании технологических процессов

Первым пунктом главного меню является «Поиск изделий». Здесь реализуется поиск по номеру изделия, который присваивается на предприятии (рис. 3). Также в этой форме имеется функция расширенного поиска, добавления изделия, просмотра всех изделий.

Номер издели	я Номер документа	Днаметр 1	Днаметр1	о номеру из Днаметр 2	Днаметр 2	Раднус.(мм)	Hav	Тип чертежа	Поиск
томер издели	л помер документа	внутренний, (мм)внешний, (мм)внутренний,(мм)внешний, (мм)))	цел	тип чертежа	
42-35235.00	99У.1294.022-02	^ 9	13	7	12	1.6	903	Единичный	
42-57348.00	99У.1954.013-01	8	11	7	10	1.6	805	Единичный	Расширенный поиск
42-34578.00	99У.3671.011-04	7	11	7	10	1.6	803	Сборочный	
42-56432.00	99У.4356.056-43	11	15	10	14	1.6	502	Единичный	Изделия с чертежами
42-32423.00	99¥.4389.234 - 12	7	11	7	10	1.6	352	Сборочный	
42-56734.00	99У.5743.014-23	8	11	7	10	2	632	Сборочный	Добавить изделие
		Количество пер	ехолников	7					
									Выход

Рис. 3. Форма «Поиск по номеру изделия»

Рассмотрим каждую из функций более подробно.

Форма «Расширенный поиск» служит для нахождения изделия по определенным параметрам, таким как внутренний и внешний диаметр, номер документа, радиус скругления, номер цеха и тип чертежа. Данная форма показана на рис. 4.

Расширенный поиск					Отчнстка фильтров		Выход	
Номер документа	Днаметр 1 внутренний,(мм)	Днаметр 1 внешний,(мм)	Днаметр 2 внутренний,(мм)	Диаметр 2 внешний,(мм)	Раднус,(мм)	Номер изделия	Цex	Тип чертежа
9У.1294.022-02	9	13	7	12	1.6	342-35235.00	903	Единичный
9У.1954.013-01	8	11	7	10	1.6	342-57348.00	805	Единичный
9У.3671.011-04	7	11	7	10	1.6	342-34578.00	803	Сборочный
9У.4356.056-43	11	15	10	14	1.6	342-56432.00	502	Единичный
99¥.4389.234-12	7	11	7	10	1.6	342-32423.00	352	Сборочный
99 <i>V</i> .5743.014-23	8	11	7	10	2	342-56734.00	632	Сборочный
9У.8943.011-00	7	11	7	-	1.6	342-37583.00	654	Единичный

Рис. 4. Форма «Расширенный поиск»

Форма «Изделие с чертежами» (рис. 5) представлена в виде удобной для отображения таблицы, в которой имеется возможность перехода по технологической оснастке. Также возможна работа с чертежом: открытие в программе растровой графики, AutoCAD, печать чертежа. Также в данную форму можно перейти из главной формы, выбрав пункт «Перечень изделий».

Форма «Добавить изделие» (рис. 6) служит для внесения новой технологической оснастки в базу данных. Также в данную форму можно перейти из главной кнопочной формы, нажав на «Добавить изделие».

	Изделие с ч	чертежами
Номер документа	99У.3671.011-04	Номер изделия 342-34578.00
Диаметр 1 внутренний (мм)	7	
Диаметр 1 внешний (мм)	11	
Диаметр 2 внутренний (мм)	7	
Диаметр 2 внешний (мм)	10	α <u>νωτ+</u> τ ν. [™] διλ
Радиус (мм)	1.6	Открыть чертеж в формате AutoCAD
Цeх	803	нч
Тип чертеж	аСборочный	Печать Увеличить закрыть

Рис. 5. Форма «Изделие с чертежами»

		Добави	ть изделие
Номер документа	99У.1294.022-02		
Диаметр 1 внутренний,(мм)	9		вьте чертежи ий, если таковые тся
Диаметр 1 внешний,(мм)	13		ertezh - Chertezh AL - ap Image AutoCAD.Draw
Днаметр 2 внутренний,(мм)	7		
Диаметр 2 внешний,(мм)	12]	Добавить
Раднус,(мм)	1.6		Закрыть
Номер изделия	342-35235.00		
Цex	903		
Тип чертежа	Единичный		

Рис. 6. Форма «Добавить изделие»

Заключение. С помощью рассмотренной базы данных удалось создать единую структурированную библиотеку данных, благодаря которой появилась возможность сократить время поиска технологической оснастки для испытаний. Обычно поиск необходимой оснастки с заданными параметрами занимал у технологов от одного до двух дней. Благодаря разработанной базе данных время на поиск и выбор оснастки теперь занимает 2–3 минуты. Использование ресурсов MS Access позволяет также осуществлять быструю замену данных, их удаление или добавление.

Литература

- [1] Дейт К.Дж. Введение в системы баз данных. М., Вильямс, 2006.
- [2] Когаловский М.Р. Перспективные технологии информационных систем. М., ДМК Пресс, Компания АйТи, 2003.
- [3] Когаловский М.Р. Энциклопедия технологий баз данных. М., Финансы и статистика, 2002.
- [4] Кузнецов С.Д. Основы баз данных. М., Интернет-Ун-т Информ. Техн., Бином, 2007.
- [5] Дьяконов М.Ю., Кузнеченкова А.В. Современные инновации в образовании. Системные технологии, 2017, № 3, с. 58–61.
- [6] Основные сведения о базах данных. *support.microsoft.com: веб-сайт.* URL: https://support.office.com/ ru-ru/article/Osnovnye-svedeniya-o-bazah-dannyh-a849ac16-07c7-4a31-9948-3c8c94a7c204 (дата обращения: 05.05.2020).
- [7] Сравнительная характеристика двух СУБД MS Access uSQL Server 2005. *itfb.com.ua: веб-сайт.* URL: https://itfb.com.ua/templates/itfb.com.ua/pdf/ MS%20Access%20MS% 20SQL% 20Server%202005.pdf (дата обращения: 06.05.2020).
- [8] Абышев И.А. Применение ИКТ повысит качество образования. Дистанционное и виртуальное обучение, 2011, № 3, с. 56–64.
- [9] DB-engines ranking. *db-engines.com: веб-сайт*. URL: https://db-engines.com/en/ranking (дата обращения: 06.05.2020).
- [10] Рассуждение на тему, какую базу данных выбирать. *habr.com: веб-сайт.* URL: https://habr.com/ru/post/348220 (дата обращения: 05.05.2020).
- [11] Конюхов В.Г. База данных. Понятие, значение и роль в современном мире. *Системные технологии*, 2017, № 3, с. 61–64.

Заварыко Александр Юрьевич — студент кафедры «Технологии ракетнокосмического машиностроения», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Старцев Антон Андреевич — студент кафедры «Технологии ракетнокосмического машиностроения», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — Васильева Татьяна Владимировна, старший преподаватель кафедры «Технологии ракетно-космического машиностроения», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Ссылку на эту статью просим оформлять следующим образом:

Заварыко А.Ю., Старцев А.А. Использование реляционных баз данных в проектировании технологических процессов. *Политехнический молодежный журнал*, 2020, № 10(51). http://dx.doi.org/ 10.18698/2541-8009-2020-10-650

USING RELATIONAL DATABASES IN PROCESS DESIGN

student.bmstu.ru
4-9779
ent.bmstu.ru
2-6546

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
Now, all large enterprises need to store, process and use	Database management system, Mi-
large amounts of information. For this, databases are	crosoft Access, relational database,
created that speed up and simplify the process of work-	SQL Server, production prepara-
ing with information. The analysis is carried out of the	tion, industrial automation, infor-
software used in the preparation of modern production	mation and communication tech-
of rocket and space technology products for the design of	nologies, server administration
technological processes. An example is given of compar-	0
ing the work of currently demanded software products	
that implement database management systems. A rela-	
tional database made for a department of one of the	
enterprises of the rocket and space industry is consid-	Received 28.09.2020
ered. The conclusion is made about the advantages of	© Bauman Moscow State Technical
using the designed database.	University, 2020

References

- [1] Date C.J. An Introduction to database systems. Addison Wesley, 2004. (Russ. ed.: Vvedenie v sistemy baz dannykh. Moscow, Vil'yams Publ., 2006.)
- [2] Kogalovskiy M.R. Perspektivnye tekhnologii informatsionnykh system [Advanced technologies of information systems]. Moscow, DMK Press Publ., Kompaniya AyTi Publ., 2003 (in Russ.).
- [3] Kogalovskiy M.R. Entsiklopediya tekhnologiy baz dannykh [Encyclopedia of database technology]. Moscow, Finansy i statistika Publ., 2002 (in Russ.).
- [4] Kuznetsov S.D. Osnovy baz dannykh [Fundamentals of database]. Moscow, Internet-Unt Inform. Tekhn. Publ., Binom Publ., 2007 (in Russ.).
- [5] D'yakonov M.Yu., Kuznechenkova A.V. Modern innovations in education. *Sistemnye tekhnologii* [System Technologies], 2017, no. 3, pp. 58–61 (in Russ.).
- [6] Osnovnye svedeniya o bazakh dannykh [Basic information about databases]. *support.microsoft.com: website* (in Russ.). URL: https://support.office.com/ru-ru/article/Osnovnye-svedeniya-o-bazakh-dannykh-a849ac16-07c7-4a31-9948-3c8c94a7c204 (accessed: 05.05.2020).
- Sravnitel'naya kharakteristika dvukh SUBD MS Access iSQL Server 2005 [Comparative analysis of MS Access iSQL Server 2005 two DBMS]. *itfb.com.ua: website* (in Russ.).
 URL: https://itfb.com.ua/templates/itfb.com.ua/pdf/MS%20Access%20MS%20SQL% 20Server%202005.pdf (accessed: 06.05.2020).
- [8] Abyshev I.A. Using of ICT will raise education quality. *Distancionnoe i virtual'noe obuchenie*, 2011, no. 3, pp. 56–64 (in Russ.).

Using relational databases in process design

- [9] DB-engines ranking. *db-engines.com: website*. URL: https://db-engines.com/en/ranking (accessed: 06.05.2020).
- [10] Rassuzhdenie na temu, kakuyu bazu dannykh vybirat' [Argument about database choice]. habr.com: website (in Russ.). URL: https://habr.com/ru/post/348220 (accessed: 05.05.2020).
- [11] Konyukhov V.G. Database. Concept, meaning and role in the modern world. *Sistemnye tekhnologii* [System Technologies], 2017, no. 3, pp. 61–64 (in Russ.).

Zavaryko A.Yu. — Student, Department of Aerospace Engineering Technologies, Bauman Moscow State Technical University, Moscow, Russian Federation.

Startsev A.A. — Student, Department of Aerospace Engineering Technologies, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — Vasilyeva T.V., Senior Lecturer, Department of Aerospace Engineering Technologies, Bauman Moscow State Technical University, Moscow, Russian Federation.

Please cite this article in English as:

Zavaryko A.Yu., Startsev A.A. Using relational databases in process design. *Politekhnicheskiy* molodezhnyy zhurnal [Politechnical student journal], 2020, no. 10(51). http://dx.doi.org/ 10.18698/2541-8009-2020-10-650.html (in Russ.).