УДК 533.6.011.6

ПАРАМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ ТЕПЛОВОГО СОСТОЯНИЯ КОНУСА ПРИ ОБТЕКАНИИ СВЕРХЗВУКОВЫМ ВОЗДУШНЫМ ПОТОКОМ

С.А. Мирошниченко

miroshnichenkosa@student.bmstu.ru SPIN-код: 6368-8146

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Работа посвящена математическому моделированию	Конус, обтекание, сверхзвуковой
теплового состояния затупленного конуса при его	поток, математическая модель,
обтекании сверхзвуковом воздушным потоком. Про-	конвективный теплообмен, тем-
ведено параметрическое исследование при имитации	пература, тепловое состояние,
полета на высоте H = 20 км со скоростью, равной 4M.	угол атаки
Проанализировано тепловое состояние конуса при	
различных углах атаки в диапазоне от 0 до 10°. Иссле-	
довано распределение характерных зон теплообмена	
по поверхности конуса. На основе результатов моде-	
лирования получена соответствующая база расчет-	
ных данных. Результаты исследования могут быть	
использованы при оптимизации геометрической	
конфигурации и режимов полета высокоскоростных	Поступила в редакцию 17.04.2020
летательных аппаратов.	© МГТУ им. Н.Э. Баумана, 2020

Введение. Вопросы моделирования теплового состояния элементов конструкции перспективных летательных аппаратов (ЛА) в условиях внутриатмосферного полета вызывают большой практический интерес [1]. Использование численных методов позволяет решать сложные задачи теплообмена. Для обеспечения высокой точности математического моделирования и приемлемого уровня затрат машинного времени в современных САЕ-системах (Computer-aided engineering) требуется оптимальным образом задавать параметры расчетной области [2, 3]. В работе рассмотрены вопросы математического моделирования теплового состояния конуса, обтекаемого сверхзвуковым потоком воздуха. Для исследуемого объекта решается сопряженная задача теплообмена [4] в широком диапазоне изменения углов атаки набегающего потока (под углом атаки понимается острый угол α между вектором скорости потока и осью конуса, причем α является положительным, если вектор скорости направлен к верхней границе расчетной области).

В качестве объекта исследования в работе рассмотрен затупленный конус (рис. 1), который по своей форме близок ко многим характерным элементам высокоскоростных ЛА.

Цель работы — анализ теплового состояния и нахождение наиболее теплонагруженных зон затупленного конуса при различных режимах его обдува.

Политехнический молодежный журнал. 2020. № 05

Рис. 1. Конфигурация затупленного конуса

Задачей исследования является получение базы данных, описывающих степень влияния параметров набегающего потока на тепловое состояние исследуемого объекта в условии стационарного теплового режима [5].

Математическая модель. Моделирование обтекания конуса проводили в программном комплексе Ansys Fluent [6] на основе решения полной системы дискретизированных уравнений Навье – Стокса в трехмерной постановке [7], при этом воздух полагали идеальным газом. Систему замыкали с помощью полуэмпирической RANS-модели турбулентности $k-\omega$ [8, 9], которая позволяет корректно рассчитывать потоки газа вблизи стенки. Температурную зависимость вязкости идеального газа задавали с помощью модели Сазерленда [10]. Теплоемкость воздуха описывали кусочно-полиномиальной функцией, а теплопроводность определяли в соответствии с кинетической теорией. Также полагали, что теплофизические свойства воздуха зависят от его температуры.

Объект исследования представляет собой сплошное однородное тело. Материал, из которого выполнен затупленный конус, — коррозионно-стойкая сталь 12X18H10T [11].

В тепловых расчетах учитывалась лишь конвективная составляющая теплового потока, поскольку при заданных условиях температура конуса не превышает 1000 К и радиационный тепловой поток по сравнению с конвективным пренебрежимо мал. При более высоких температурах поверхности конуса интенсивность радиационного теплообмена становится более существенной и должна быть учтена при моделировании.

Геометрические характеристики конуса задавали следующим образом: диаметр основания d = 500 мм, угол полураствора $\Theta = 10^{\circ}$, носовое затупление выполнено в форме дуги окружности радиусом r = 20 мм.

Для упрощения систематизации полученных результатов конус условно разделен на три области: носовую, центральную и донную (рис. 2). Поскольку рассматриваются различные углы атаки, для адекватной интерпретации результатов целесообразно выделить верхнюю и нижнюю поверхности конуса, в частности, образующие конуса, получаемые при его сечении вертикальной плоскостью. При наличии угла атаки, нижняя поверхность является наветренной, а верхняя — теневой.

Параметрическое исследование теплового состояния конуса при обтекании ...

Рис. 2. Разбиение поверхности исследуемого конуса

Построение расчетной сетки проведено по рекомендациям, приведенным в работе [3]. Поскольку решается сопряженная задача теплообмена, построение расчетной сетки для области течения газа и области твердотельного конуса проведено отдельно.

Параметры набегающего воздушного потока соответствовали полету ЛА на высоте H = 20 км со скоростью, равной 4*M*. При данных условиях полета температура торможения воздуха $T^* = 882,9$ К, а давление торможения $p^* = 110296$ Па. Рассмотрен диапазон углов атаки $\alpha = 0...10^\circ$. Начальную температуру конуса при моделировании считали равной $T_w = 300$ К.

Результаты моделирования. Прежде чем говорить о тепловом состоянии конуса, рассмотрим газодинамическую картину его обтекания при $\alpha = 0^{\circ}$ (рис. 3, *a*) и $\alpha = 10^{\circ}$ (рис. 3, *b*). При $\alpha = 0^{\circ}$ отчетливо видны отсоединенный косой скачок уплотнения и зона разряжения за днищем конуса, симметричные относительно оси конуса. При наличии угла атаки симметрия картины обтекания нарушается. С наветренной стороны косой скачок уплотнений интенсифицируется и прижимается набегающим потоком к поверхности конуса, в то время как с теневой стороны конуса наблюдается обратная картина. Отмеченные особенности течения наглядно иллюстрируются на рис. 4, где представлено распределение числа Маха в плоскости, перпендикулярной оси конуса. Симметрия области разрежения за днищем конуса также нарушается, имеет место ее отклонение от оси конуса в сторону верхней границы расчетной области.

Политехнический молодежный журнал. 2020. № 05

Рис. 4. Поля распределений числа Маха при α = 10°

Несимметричность картины обтекания конуса при наличии угла атаки приводит к соответствующему изменению полей температуры воздушного потока (рис. 5, *б*).

При отсутствии угла атаки (рис. 5, a) области максимальной температуры симметричны и располагаются в зоне завихрения у носового скругления конуса [3] и зоне разрежения за его днищем. При наличии угла атаки (рис. 5, δ) происходит пространственная трансформация этих зон, в частности температура и ее градиент в пограничном слое у верхней и нижней поверхностей конуса заметно различаются (рис. 6). Большие значения температуры и толщины пограничного слоя в области теневой поверхности

конуса соответственно приводят к увеличению значений удельного теплового потока.

Рис. 5. Поля распределений статической температуры: $a - при \alpha = 0^\circ; 6 - \alpha = 10^\circ$

Несимметричность тепловой картины приводит к тому, что на различных участках поверхности конуса тепловой поток может иметь различную направленность: к поверхности конуса или от поверхности конуса. Отметим, что при реализации стационарного режима интегральный тепловой поток через поверхность конуса равен нулю. При этом тепловой поток имеет положительное направление (направлен к поверхности) в носовой зоне, в зоне днища и на всей теневой поверхности конуса. В рассматриваемом случае теплоотдающими поверхностями являются центральная и донная области нижней поверхности конуса.

Для анализа теплового состояния конуса потребовалось решить сопряженную задачу, включающую вычисление тепловых потоков и полей температур как в примыкающей к конусу зоне, так и внутри него. Результаты моделирования показали следующее. При отсутствии угла атаки (рис. 7, *a*) поля распределения

Параметрическое исследование теплового состояния конуса при обтекании ...

температуры симметричны. При наличии угла атаки (рис. 7, *6*) симметричность распределения температуры нарушается. Минимальная температура наблюдается в центральной области конуса у его нижней поверхности. При увеличении угла атаки (рис. 7, *в*) область минимальной температуры смещается ближе к носовой области конуса, а прогрев донной области превышает прогрев носовой. Сравнение распределений температуры в плоскости симметрии конуса при наличии угла атаки, представленных на рис. 6 и рис. 7, подтверждают, что область теплосъема находится непосредственно на нижней поверхности конуса.

Рис. 7. Поля распределений температуры: $a - при \alpha = 0^\circ; \delta - \alpha = 6^\circ; a - \alpha = 10^\circ$

На основе полученных результатов построены распределения температуры вдоль верхней (рис. 8, *a*) и нижней (рис. 8, *б*) поверхностей конуса в диапазоне углов атаки $\alpha = 0...10^{\circ}$. На рис. 8 приведены данные, соответствующие линиям пересечения конуса с вертикальной плоскостью симметрии. Как видно, при увеличении угла атаки область минимальной температуры смещается на нижней поверхности ближе к носовой области. При этом градиент температуры в носовой области увеличивается и температура днища начинает превышать температуру носовой области.

Рис. 8. Распределение температуры на верхней (*a*) и нижней (*б*) поверхностях конуса при различных значениях угла атаки:

 $\alpha=0^{\circ}$ — оранжевый; $\alpha=2^{\circ}$ — синий; $\alpha=4^{\circ}$ — красный; $\alpha=6^{\circ}$ — салатовый; $\alpha=8^{\circ}$ —фиолетовый; $\alpha=10^{\circ}$ — бирюзовый

Из полученных данных следует, что температура верхней и нижней поверхностей конуса в носовой области практически одинакова ввиду относительно малой площади поверхности теплообмена. В центральной области температура верхней поверхности начинает превышать температуру нижней ввиду большего теплосъема с нижней поверхности. Ближе к области днища температуры поверхностей выравниваются, что объясняется существенным влиянием на теплообмен зоны разрежения за днищем конуса.

При моделировании теплового состояния конуса в исследованном диапазоне углов атаки максимальное местное значение температуры конуса составило 847,3 К. Это примерно на 50 К ниже температуры торможения воздушного потока и значительно ниже температуры плавления материала конуса, которая составляет 1 770 К. Таким образом, при моделируемых условиях полета элементы конструкции ЛА будут находиться в рабочей области температур.

Выводы. 1. Проведено моделирование обтекания конуса сверхзвуковым воздушным потоком, параметры которого соответствовали полету ЛА на высоте 20 км со скоростью, равной 4*M*. Решена сопряженная задача теплообмена, включающая расчет теплообмена поверхности конуса с воздушным потоком и теплообмена внутри конуса. Получена расчетная база данных с варьированием углов атаки в диапазоне $\alpha = 0...10^\circ$.

2. Проанализировано распределение удельных тепловых потоков по поверхности конуса при различных режимах обтекания. При наличии угла атаки зона теплосъема смещается в сторону носовой области с наветренной стороны. Установлено, что с увеличением угла атаки происходит снижение температуры в носовой части и увеличение в области днища.

3. Выявлено, что при реализации стационарного теплового режима температура конуса находится в диапазоне 825...847 К, что оказывается значительно ниже температуры плавления материала, из которого сделан конус (1770 К).

4. Полученные данные могут быть использованы при проектировании элементов конструкции ЛА с внутриатмосферной зоной эксплуатации. Наиболее теплонагруженными зонами являются носовая область и область днища.

Литература

- [1] Купрюхин А.А. Оптимизация тепловой защиты гиперзвуковых летательных аппаратов путем вариации каталитических и излучательных свойств материалов тепловой защиты. Автореф. дис. ... канд. техн. наук. М., МАИ, 2010.
- [2] Воронецкий А.В., Арефьев К.Ю., Гусев А.А. Анализ особенностей численного моделирования конвективных тепловых потоков RANS методами в задачах обтекания элементов конструкции высокоскоростных летательных аппаратов и их двигателей. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2017, № 1, с. 98–111. DOI: http://dx.doi.org/10.18698/0236-3941-2017-1-98-111
- [3] Арефьев К.Ю., Абрамов М.А., Мирошниченко С.А. и др. Параметрическое исследование конвективного теплообмена при обтекании затупленного конуса сверхзвуковым воздушным потоком. Инженерный журнал: наука и инновации, 2019, № 6. DOI: http://dx.doi.org/10.18698/2308-6033-2019-6-1886
- [4] Рубцов Н.А., Синицын В.А. Исследование нестационарного радиационноконвективного теплообмена при обтекании аблирующей пластины потоком излучающе-поглозающей и рассеивающей среды. ПМТФ, 2004, т. 45, № 3, с. 129–135.
- [5] Усадский Д.Г., Карпенко А.Н., Фокин В.М. Экспериментальное определение теплопроизводительности нагревателя жидкого теплоносителя в стационарном тепловом режиме. Вестник Волгоградского государственного архитектурностроительного университета. Серия: Строительство и архитектура, 2010, № 19, с. 108–111.
- [6] ANSYS, программные продукты. *cadfem-cis.ru: веб-caйm*. URL: https://www.cadfem-cis.ru/products/ansys/ (дата обращения: 25.02.2020).

Политехнический молодежный журнал. 2020. № 05

- [7] Быков Л.В., Никитин П.В., Пашков О.А. Математическое моделирование процессов обтекания затупленного тела высокоскоростным потоком. *Труды МАИ*, 2014, № 78. URL: http://www.trudymai.ru/published.php?ID=53445&eng=N
- [8] Лойцянский Л.Г. Механика жидкостей и газов. М., ГИФМЛ, 1960.
- [9] Langtry R.B., Menter F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. *AIAA J.*, 2009, vol. 47, no. 12, pp. 2894–2906. DOI: https://doi.org/10.2514/1.42362
- [10] Григорьев Ю.Н., Ершов И.В. Линейная устойчивость сверхзвукового течения куэтта молекулярного газа в условиях вязкой стратификации и возбуждения колебательной моды. Известия РАН. Механика жидкости и газа, 2017, № 1, с. 11–27.
- [11] Зубченко А.С., ред. Марочник сталей и сплавов. М., Машиностроение, 2003.

Мирошниченко Сергей Александрович — студент кафедры «Ракетные двигатели», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — Воронецкий Андрей Владимирович, доктор технических наук, профессор кафедры «Ракетные двигатели», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Ссылку на эту статью просим оформлять следующим образом:

Мирошниченко С.А. Параметрическое исследование теплового состояния конуса при обтекании сверхзвуковым воздушным потоком. *Политехнический молодежный журнал*, 2020, № 05(46). http://dx.doi.org/ 10.18698/2541-8009-2020-05-608

A PARAMETRIC STUDY OF THE THERMAL STATE OF A CONE WITH A SUPERSONIC AIRFLOW

S.A. Miroshnichenko

miroshnichenkosa@student.bmstu.ru SPIN-code: 6368-8146

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The work is devoted to mathematical modeling of the	Cone, airflow, supersonic airflow,
thermal state of a blunt cone in a supersonic airflow	mathematical model, convective
conditions. A parametric study was conducted when	heat transfer, temperature, thermal
simulating a flight at an altitude of $H = 20$ km at a	state, angle of attack
speed equal to 4M. The thermal state of the cone is	
analyzed at various attack angles in the range from 0 to	
10°. The distribution of characteristic heat transfer	
zones over the surface of the cone is investigated. Based	
on the simulation results, the corresponding base of	
calculation data is obtained. The results of the study	Received 17.04.2020
can be used to optimize the geometric configuration and	© Bauman Moscow State Technical
flight modes of high-speed aircraft.	University, 2020

References

- [1] Kupryukhin A.A. Optimizatsiya teplovoy zashchity giperzvukovykh letatel'nykh apparatov putem variatsii kataliticheskikh i izluchatel'nykh svoystv materialov teplovoy zashchity. Avtoref. dis. kand. tekhn. nauk [Thermal protection optimization of hypersonic aircraft by variation of catalytic and emission properties of thermal shield materials. Kand. tech. sci. diss.]. Moscow, MAI Publ., 2010 (in Russ.).
- [2] Voronetskiy A.V., Arefyev K.Yu., Gusev A.A. RANS methods in flow problems of high speed aircraft constructions elements and aircraft engines for features analysis of convective heat fluxes numerical simulation. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2017, no. 1, pp. 98–111. DOI: http://dx.doi.org/10.18698/0236-3941-2017-1-98-111 (in Russ.).
- [3] Arefyev K.Yu., Abramov M.A., Miroshnichenko S.A., et al. Parametric study of convective heat transfer with supersonic airflow around a blunted cone. *Inzhenernyy zhurnal: nauka i innovatsii* [Engineering Journal: Science and Innovation], 2019, no. 6. DOI: http://dx.doi.org/10.18698/2308-6033-2019-6-1886 (in Russ.).
- [4] Rubtsov N.A., Sinitsyn V.A. Unsteady radiative-convective heat transfer in a flow emitting-absorbing and scattering medium around an ablating plate. *PMTF*, 2004, vol. 45, no. 3, pp. 129–135 (in Russ.). (Eng. version: *J. Appl. Mech. Tech. Phy.*, 2004, vol. 45, no. 3, pp. 415–419. DOI: https://doi.org/10.1023/B:JAMT.0000025024.86142.e3)
- [5] Usadskiy D.G., Karpenko A.N., Fokin V.M. Experimental determination of heat productivity of heat-carrying fluid heater under steady-state thermal condition. *Vestnik Volgogradskogo gosudarstvennogo arkhitekturno-stroitel'nogo universiteta. Seriya: Stroitel'stvo i arkhitektura* [Bulletin of Volgograd State University of Architecture and Civil Engineering. Series: Construction and Architecture], 2010, no. 19, c. 108–111 (in Russ.).

- [6] ANSYS, programmnye produkty [ANSYS software]. *cadfem-cis.ru: website* (in Russ.). URL: https://www.cadfem-cis.ru/products/ansys/ (accessed: 25.02.2020).
- [7] Bykov L.V., Nikitin P.V., Pashkov O.A. Mathematical modeling of high-speed flow around a blunt body. *Trudy MAI*, 2014, no. 78. URL: http://www.trudymai.ru/ published.php?ID=53445&eng=N (in Russ.).
- [8] Loytsyanskiy L.G. Mekhanika zhidkostey i gazov [Fluid mechanics]. Moscow, GIFML Publ., 1960 (in Russ.).
- [9] Langtry R.B., Menter F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. *AIAA J.*, 2009, vol. 47, no. 12, pp. 2894–2906. DOI: https://doi.org/10.2514/1.42362
- [10] Grigor'yev Yu.N., Ershov I.V. Linear stability of supersonic Couette flow of a molecular gas under the conditions of viscous stratification and excitation of the vibrational mode. *Izvestiya RAN. Mekhanika zhidkosti i gaza*, 2017, no. 1, pp. 11–27 (in Russ.). (Eng. version: *Fluid Dyn.* 2017, vol. 52, no. 1, pp. 9–24. https://doi.org/ 10.1134/S0015462817010021)
- [11] Zubchenko A.S., ed. Marochnik staley i splavov [Guidebook of steels and alloys]. Moscow, Mashinostroenie Publ., 2003 (in Russ.).

Miroshnichenko S.A. — Student, Department of Rocket Engines, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — Voronetskiy A.V., Dr. Sc. (Eng.), Professor, Department of Rocket Engines, Bauman Moscow State Technical University, Moscow, Russian Federation.

Please cite this article in English as:

Miroshnichenko S.A. A parametric study of the thermal state of a cone with a supersonic air-flow. *Politekhnicheskiy molodezhnyy zhurnal* [Politechnical student journal], 2020, no. 05(46). http://dx.doi.org/ 10.18698/2541-8009-2020-05-608.html (in Russ.).