УДК 534.222.2

ФОРМИРОВАНИЕ НАПРАВЛЕННЫХ ПОТОКОВ ЧАСТИЦ ПРИ ГОРЕНИИ ГАЗООБРАЗНОЙ СМЕСИ В КАНАЛЕ

Т.Д. Садохина

sadtatdmi@mail.ru SPIN-код: 4910-6913

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Рассмотрена задача о напылении микрочастиц на твердотельную подложку и предложен метод ее решения, основанный на формировании направленно- го потока частиц в импульсе следующих друг за дру- гом волн сжатия, генерируемыми при развитии горе- ния газообразной смеси в канале. Методами числен- ного моделирования получена зависимость эффек- тивности напыления от длины канала, а также дана оценка равномерности напыления при реализа- ции наиболее эффективного режима. Продемонстри- ровано, что режим с постепенным ускорением мик- рочастиц в потоке, генерируемом ускоряющимся пламенем в коротком канале, обеспечивает более эффективное напыление микрочастиц на подложку по сравнению с напылением микрочастиц в импульсе даточащиощиой волини формиристой в импульсе	Напыление микрочастиц, газо- термическое напыление, детона- ционное напыление, переход горе- ния в детонацию (ПГД), волна горения, горение в канале, эф- фективность напыления, урав- нения Навье — Стокса
перехода горения в детонацию в длинном канале.	© МГТУ им. Н.Э. Баумана, 2018
1 1 ,	

Введение. Напыление частиц на различные поверхности применяют для создания функциональных покрытий — износостойких, коррозионностойких, антифрикционных, антизадирных, теплостойких, термобарьерных, электроизоляционных, электропроводных, и т. д. [1]. Детонационное напыление — одна из разновидностей газотермического напыления, в его основе лежит принцип нагрева напыляемого материала (обычно порошка) с последующим его ускорением и переносом на напыляемую деталь с помощью продуктов детонации.

Детонационное напыление позволяет напылять металлы и их сплавы, оксиды, твердые сплавы на основе карбидов. Оно широко применяется в авиации, автомобильной и других областях машиностроения [1]. При этом методики, общепринятые для более крупных частиц, нецелесообразно использовать для нано- и микрочастиц [2], интерес к которым на данный момент возрастает в связи с созданием перспективных наноматериалов.

В недавних исследованиях показано, что эффективность напыления микрочастиц (с размером до 100 мкм при плотности материала частиц 1 г/см³) в импульсе детонационной волны снижается по сравнению с эффективностью напыления более крупных частиц. Это обусловлено относительно быстрым откликом микрочастиц на стороннее импульсное воздействие, включая воздействие отраженной от мишени ударной волны [2].

Политехнический молодежный журнал. 2018. № 10

В работе предложено проверить гипотезу о том, что указанный эффект может быть снижен при ускорении микрочастиц в импульсе следующих друг за другом волн сжатия, что реализуется при сжигании газообразной смеси не в детонационном режиме, а в режиме дефлаграционного горения в канале.

Постановка задачи и математическое моделирование. Известно, что при распространении волны дефлаграционного горения в канале, заполненном предварительно перемешанной горючей смесью, горение пламени ускоряется и способно перейти в детонацию [3]. При этом ускоряющееся пламя генерирует перед своим фронтом последовательность волн сжатия [4], передающих импульс свежей смеси, вытесняя ее вниз по течению. При этом, согласно газодинамической теории [5], ударная волна формируется в результате взаимодействия нагоняющих друг друга волн сжатия только на определенном расстоянии от поверхности ускоряющегося поршня (роль которого в данном случае играет фронт пламени). В связи с этим целесообразно предположить, что такой нестационарный поток можно использовать для создания направленного движения микрочастиц со среза канала на мишень. Принципиальная постановка такой задачи показана на рис. 1.

Рис. 1. Постановка задачи об имплантации микрочастиц в импульсе, создаваемом в ходе нестационарного горения газа в трубке

В настоящей работе методами численного моделирования была решена следующая конкретная задача. Цилиндрическую трубку диаметром 10 мм заполняли стехиометрической водород-кислородной смесью при нормальных условиях (300 К, 1 атм). На выходе из трубки в окружающую атмосферу (воздух при нормальных условиях) располагали слой микрочастиц (1 мкм) заданной толщины (5 мм). Инициирование горения осуществлялось у левого конца трубки в слое нагретого до температуры 1500 К газа. В ходе решения формировалась волна горения, распространяющаяся с ускорением в трубке и формирующая поток перед своим фронтом, вытесняющий смесь с частицами из трубки в направлении мишени, расположенной на расстоянии 2 см от среза трубки. В ходе исследования варьировалась длина трубки, что определяло реализацию различных стадий ускорения пламени и позволило исследовать их эффективность на процесс напыления частиц на мишень. Для понимания характерных масштабов развития процесса были проведены предварительные расчеты в протяженной трубке (рис. 2), длина которой заведомо превосходила длину перехода горения в детонацию (ПГД).

Исследовали режим напыления частиц со следующими начальными параметрами. Объемную концентрацию частиц в слое задавали равной $\alpha_p = 10^{-4}$. Материал частиц не конкретизировали, но для простоты плотность материала выбирали $\rho_{p0} = 10^3$ кг/м³. Массовая плотность фазы частиц при этом составляла $\rho_p = \rho_{p0}\alpha_p = 10^{-1}$ кг/м³. Диаметр частиц задавали равным $d_p = 10^{-6}$ м, с учетом этого средняя масса частицы составляла $m_p = \frac{1}{6}\pi d_p^3 \rho_{p0} \approx 5 \cdot 10^{-16}$ кг. Соответственно, количество частиц в единице объема $N_p = \frac{\rho_p}{m_p} = 2 \cdot 10^{14}$ м⁻³.

Взаимодействие потока газа и частиц рассматривали в континуальном приближении в соответствии со следующими уравнениями [2]:

Закон движения частиц имеет вид

$$\rho_p \frac{d\mathbf{U}_p}{dt} = N_p \,\mathbf{F}_{st},\tag{1}$$

где **U**_{*p*} — скорость движения частиц; **F**_{st} — сила Стокса.

Из закона Стокса с учетом (1) следует уравнение, связывающее скорости движения газа и частиц:

$$\frac{d\mathbf{U}_p}{dt} = \frac{\mathbf{U}_g - \mathbf{U}_p}{\tau_{st}},\tag{2}$$

где U_g — локальная массовая скорость потока газа; τ_{st} — время релаксации скорости частиц к скорости потока.

Динамику частиц рассматривают в приближении сплошной среды, в связи с этим потоки частиц с определенными согласно (2) скоростями рассчитывают по уравнению неразрывности, записанного для фазы частиц:

$$\frac{\partial \rho_p}{dt} + \nabla (\rho_p \mathbf{U}_p) = 0.$$
(3)

Политехнический молодежный журнал. 2018. № 10

Динамика газа описывается уравнениями Навье — Стокса в цилиндрических координатах с учетом сжимаемости, вязкости, теплопроводности, многокомпонентной диффузии и химической кинетики [6]:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_r)}{\partial r} + \frac{\partial (\rho u_z)}{\partial z} + \frac{\rho u_r}{\partial r} = 0;$$
(4)

$$\frac{\partial c_i}{\partial t} + u_r \frac{\partial c_i}{\partial r} + u_z \frac{\partial c_i}{\partial z} = \frac{1}{\rho} \left[\frac{1}{r} \frac{\partial}{\partial r} \left(r \rho D_i \frac{\partial c_i}{\partial r} \right) + \frac{\partial}{\partial r} \left(\rho D_i \frac{\partial c_i}{\partial z} \right) \right] + \left(\frac{\partial c_i}{\partial t} \right)_{\text{XHM}}; \tag{5}$$

$$\rho\left(\frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + u_z \frac{\partial u_r}{\partial z}\right) = -\frac{\partial \rho}{\partial r} + \frac{\partial \sigma_{rr}}{\partial r} + \frac{\partial \sigma_{rz}}{\partial z} + \frac{\sigma_{rr} - \sigma_{\phi\phi}}{r};$$
(6)

$$\rho\left(\frac{\partial u_z}{\partial t} + u_r\frac{\partial u_z}{\partial r} + u_z\frac{\partial u_z}{\partial z}\right) = -\frac{\partial\rho}{\partial z} + \frac{\partial\sigma_{rz}}{\partial r} + \frac{\partial\sigma_{zz}}{\partial z} + \frac{\sigma_{rz}}{r};$$
(7)

$$\rho\left(\frac{\partial E}{\partial t} + u_{r}\frac{\partial E}{\partial r} + u_{z}\frac{\partial E}{\partial z}\right) = -\left(\frac{1}{r}\frac{\partial}{\partial r}(rpu_{r}) + \frac{\partial(\rho u_{z})}{\partial z}\right) + \frac{\partial}{\partial r}(\sigma_{rr}u_{r} + \sigma_{rz}u_{z}) + \frac{\partial}{\partial z}(\sigma_{rr}u_{r} + \sigma_{rz}u_{z}) + \frac{1}{r}(\sigma_{rr}u_{r} + \sigma_{rz}u_{z}) + \frac{1}{r}\frac{\partial}{\partial r}(rk(T)\frac{\partial T}{\partial r}) + \frac{\partial}{\partial z}\left(k(T)\frac{\partial T}{\partial z}\right) + \sum_{i}\frac{h_{i}}{m_{i}}\left(\frac{1}{r}\frac{\partial}{\partial r}\left(r\rho D_{i}(T)\frac{\partial c_{i}}{\partial r}\right) + \frac{\partial}{\partial z}\left(\rho D_{i}(T)\frac{\partial c_{i}}{\partial z}\right)\right),$$
(8)

где u_r, u_z — компоненты скорости; ρ — плотность газовой смеси; c_i — массовая концентрация; D_i — коэффициент многокомпонентной диффузии; $E = \varepsilon + \frac{1}{2} \left(u_r^2 + u_z^2 \right)$ — полная удельная энергия; $\varepsilon = c_V T + \sum_i h_i c_i$ — внутренняя удельная энергия; $p = \left(\sum_i \frac{c_i}{m_i} \right) R \rho T$ — давление; h_i — удельная энтальпия образования; m_i — масса мо-

 $p = \left(\sum_{i} \frac{c_i}{m_i}\right) R \rho T$ — давление; h_i — удельная энтальпия образования; m_i — масса моля; k — коэффициент теплопроводности; $c_V = \sum_{i} c_{Vi} c_V$ — удельная теплоемкость смеси, вычисляемая из табличных значений [7]; R — универсальная газовая постоянная; T— температура; σ_{ij} — компоненты тензора вязких напряжений:

$$\sigma_{rr} = 2\mu \frac{\partial u_r}{\partial r} - \frac{2}{3}\mu \left(\frac{\partial u_r}{\partial r} + \frac{\partial u_z}{\partial z} + \frac{u_r}{r} \right);$$

$$\sigma_{\varphi\varphi} = 2\mu \frac{u_r}{r} - \frac{2}{3}\mu \left(\frac{\partial u_r}{\partial r} + \frac{\partial u_z}{\partial z} + \frac{u_r}{r} \right);$$

$$\sigma_{zz} = 2\mu \frac{\partial u_z}{\partial z} - \frac{2}{3}\mu \left(\frac{\partial u_r}{\partial r} + \frac{\partial u_z}{\partial z} + \frac{u_r}{r} \right);$$

$$\sigma_{zr} = \sigma_{rz} = \mu \left(\frac{\partial u_z}{\partial r} + \frac{\partial u_r}{\partial z} \right); \ \sigma_{r\varphi} = \sigma_{\varphi z} = 0,$$

где µ — коэффициент вязкости.

Коэффициенты переноса µ, k и D_i задавали исходя из соотношений кинетической теории газов [8, 9].

Входящий в уравнение (4) источниковый член $\left(\frac{\partial c_i}{\partial t}\right)_{xum}$ определяет изменение

массовой доли *i*-й компоненты за счет химических реакций.

Систему уравнений (1) – (8) решали численно с использованием модифицированного лагранжево-эйлерова метода [10]. Размер расчетных ячеек выбирали равным 0,1 × 0,1 мм. Такой размер позволяет разрешить ширину фронта пламени на конечном числе ячеек, что позволяет получить весьма точные результаты.

Результаты. Расчет задачи о распространении волны горения в протяженном канале показал, что переход горения в детонацию для выбранной геометрии трубки, заполненной смесью заданного состава при заданных начальных условиях, происходит на расстоянии $L_{\Pi\Gamma\Pi} = 6,5$ см. Последовательность полей температуры на стадиях ускорения пламени и формирования детонационной волны показаны на рис. 3. Время ПГД в данной задаче составляло 148 мкс.

Рис. 3. Результаты ПГД. Развитие горения в канале для моментов времени 50, 125, 148 и 155 мкс

Зависимости координаты и скорости ведущей точки фронта пламени от времени представлены на рис. 4. На данном графике наглядно видно, как резко возрастает скорость распространения волны горения при ПГД, однако достаточно скоро падает и стабилизируется на уровне порядка 2700 м/с, что соответствует значению скорости Чепмена — Жуге распространения стационарной детонационной волны.

Рис. 4. Зависимости координаты ведущей точки (*зеленый цвет*) и скорости ведущей точки фронта пламени (*красный цвет*) от времени

В соответствии с полученным значением $L_{\Pi\Gamma\Pi} = 6,5$ см задача о напылении частиц решалась для каналов длиной *L*, варьируемой в диапазоне 5...7 см с шагом 0,25 см.

Для анализа эффективности напыления частиц в ходе расчета оценивали массовую долю частиц, достигших и осевших на поверхности мишени. Массу осевших частиц относили к массе частиц, находящихся в изначально заданном слое:

$$M_0 = V_0 = \pi r^2 l \rho_p = \left(\pi \cdot 10^{-4} \cdot 5 \cdot 10^{-3} \right) \,\mathrm{m}^3 \cdot 10^{-1} \,\mathrm{kr/m^3} = 5\pi \cdot 10^{-8} \,\mathrm{kr}$$

В рамках рассматриваемого в настоящей работе приближения считали, что при напылении частицы скапливаются в цилиндрическом объеме высотой в одну ячейку вблизи поверхности подложки. Для того чтобы найти массу осевших на подложке частиц, рассчитывали интеграл от плотности по объему в цилиндрических координатах:

$$M = \iiint_V r \rho_p dz dr d\varphi = \int_0^{2\pi} d\varphi \int_0^h dz \int_0^{r_0} r \rho_p dr,$$

где *h* = 0,1 мм — ширина ячейки, *r*₀ = 50 мм — размер мишени.

Зависимость удельной массы осевших на подложке микрочастиц $\left(\frac{M}{M_0} \cdot 100\%\right)$ от длины канала показана на рис. 5. Видно, что наиболее эффективное напыление достигается при длине канала L = 6,25 см, при этом подложки достигает 3,8 % частиц.

Формирование направленных потоков частиц при горении газообразной смеси в канале

Рис. 5. Зависимость интенсивности напыления частиц от длины канала

На рис. 6 продемонстрировано, насколько равномерным оказывается напыление при реализации наиболее эффективного режима.

Заключение. Проведено численное моделирование процесса напыления микрочастиц в потоке, формируемом в процессе нестационарного горения газообразной водород-кислородной смеси в трубке.

Получена зависимость эффективности напыления микрочастиц от длины трубки и от соответствующего режима горения.

Продемонстрировано, что режим с постепенным ускорением микрочастиц в потоке, генерируемом ускоряющимся пламенем, обеспечивает более эффективное напыление микрочастиц на подложку по сравнению с напылением микрочастиц в импульсе детонационной волны.

Литература

- [1] Балдаев Л.Х., ред. Газотермическое напыление. Москва, Маркет ДС, 2007, с. 254–283.
- [2] Голуб В.В., Иванов М.Ф., Киверин А.Д., Яковенко И.С. О детонационноиндуцированной имплантации микрочастиц в подложку. Письма ЖТФ, 2014, т. 40, № 20, с. 88–95.
- [3] Зельдович Я.Б. К теории возникновения детонации в газах. ЖТФ, 1947, т. 17, № 1, с. 3–26.
- [4] Саламандра Г.Д., Баженова Т.В., Набоко И.М. Формирование детонационной волны при горении газа в трубах. *ЖТФ*, 1959, т. 29, № 11, с. 1354–1359.
- [5] Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. Москва, Наука, 1986, 736 с.
- [6] Гальбугрт В.А., Иванов М.Ф., Петухов В.А. Механизмы формирования сверхвысоких давлений при распространении взрывных волн в конических полостях. *Теплофизика высоких температур*, 2008, т. 46, № 6, с. 937–943.
- [7] Stull D.R., Prophet H. *Thermochemical tables*. Department of Commerce, National Bureau of Standards, 1971, 1139 p.
- [8] Варнатц Ю., Маас У., Диббл Р. Горение. Москва, Физматлит, 2003. 352 с.
- [9] Гальбурт В.А., Иванов М.Ф., Петухов В.А. Математическое моделирование различных режимов развития горения в конусе. *Химическая физика*, 2007, т. 26, № 2, с. 40–49.
- [10] Белоцерковский О.М., Давыдов Ю.М. Метод крупных частиц в газовой динамике. Вычислительный эксперимент. Москва, Наука, 1982, с. 52.

Садохина Татьяна Дмитриевна — студентка кафедры «Физика», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — Киверин Алексей Дмитриевич, кандидат физикоматематических наук, заведующий отделом Объединенного института высоких температур Российской академии наук (ОИВТ РАН), доцент кафедры «Физика», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

FORMATION OF DIRECTED PARTICLE FLOWS DURING A GAS MIXTURE BURNING IN A CHANNEL

T.D. Sadokhina

sadtatdmi@mail.ru SPIN-code: 4910-6913

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The problem of the deposition of microparticles on a solid substrate is considered. A method for its solution is proposed, based on formation of a directed stream of particles in a pulse of successive compression waves generated when a gaseous mixture develops in the channel. Dependence of deposition efficiency on channel length was obtained as well as uniformity of deposition in implementation of the most productive mode was estimated by numerical simulation methods. It has been shown that the regime with gradual acceleration of microparticles in a stream generated by an accelerating flame in a short channel provides more efficient deposi- tion of microparticles on a substrate as compared to	Microparticles spraying, gas-thermal spraying, detonation spraying, def- lagation-to-detanation transition (DDT), combustion wave, burning in a channel, coating efficiency, Navier- Stokes equation
sputtering microparticles in a detonation impulse gen-	Received 09.10.2018
erated by the transition of combustion to detonation in	© Bauman Moscow State Technical
a long channel.	University, 2018

References

- Baldaev L.Kh., ed. Gazotermicheskoe napylenie [Gas-thermal evaporation]. Moscow, Market DS publ., 2007, pp. 254–283.
- [2] Golub V.V., Ivanov M.F., Kiverin A.D., Yakovenko I.S. On detonation-induced implantation of microparticles into the substrate. *Pis'ma ZhTF*, 2014, vol. 40, no. 20, pp. 88–95.
- [3] Zel'dovich Ya.B. To the theory of detonation initiation in gases. *ZhTF*, 1947, vol. 17, no. 1, pp. 3–26.
- [4] Salamandra G.D., Bazhenova T.B., Naboko I.M. Detonation wave formation at gas combustion in pipes. *ZhTF*, 1959, vol. 29, no. 11, pp. 1354–1359.
- [5] Landau L.D., Lifshits E.M. Teoreticheskaya fizika. T. 6. Gidrodinamika [Theoretical physics. Vol. 6. Hydrodynamics]. Moscow, Nauka publ., 1986, 736 p.
- [6] Gal'bugrt V.A., Ivanov M.F., Petukhov V.A. Mechanisms of development of superhigh pressures under conditions of propagation of explosion waves in conical cavities. *Teplofizika vysokikh temperatur*, 2008, vol. 46, no. 6, pp. 937–943. (Eng. version: *High Temperature*, 2008, vol. 46, no. 6, pp. 867–873.)
- [7] Stull D.R., Prophet H. Thermochemical tables. Department of Commerce, National Bureau of Standards, 1971, 1139 p.
- [8] Warnatz J., Maas U., Dibble R.W. Combustion. Springer, 2001, 299 p. (Russ. ed.: Gorenie. Moscow, Fizmatlit publ., 2003. 352 p.)
- [9] Gal'burt V.A., Ivanov M.F., Petukhov V.A. Mathematical modelling of different regimes of combustion progress in a cone. *Khimicheskaya fizika*, 2007, vol. 26, no. 2, pp. 40–49.

Politechnical student journal. 2018. no. 10

[10] Belotserkovskiy O.M., Davydov Yu.M. Metod krupnykh chastits v gazovoy dinamike. Vychislitel'nyy eksperiment [Large-particle method in gas dynamics. Computational experiment]. Moscow, Nauka Publ., 1982, p. 52.

Sadokhina T.D. — student, Department of Physics, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — A.D. Kiverin, Cand. Sc. (Phys.-Math.), Head of Department, Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT RAS), Assoc. Professor, Department of Physics, Bauman Moscow State Technical University, Moscow, Russian Federation.