СТРУКТУРА ВОСХОДЯЩЕГО ДВУХФАЗНОГО ГАЗОЖИДКОСТНОГО ПОТОКА В РЕЖИМЕ ЕСТЕСТВЕННОЙ ЦИРКУЛЯЦИИ В НАКЛОННОМ КАНАЛЕ В УСЛОВИЯХ СУЩЕСТВЕННОГО ВЛИЯНИЯ МАССОВЫХ СИЛ

Д.Р. Мартынов

denismartyn96@gmail.com SPIN-код: 6776-6623

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация

Ключевые слова

Проведено экспериментальное исследование струк-Ядерный реактор, гидродинатуры восходящего двухфазного потока в режиме мика, двухфазный поток, естеестественной циркуляции в наклонном канале при ственная циркуляция, наклонный канал, структура потока, учете существенного влияния массовых сил. С повизуализация, метод цифровой мощью PIV-метода получены картины течений газожидкостного потока, выявлена их структура, трассерной визуализации (меmod PIV — Particle Image Visualее особенности, проведена фиксация смены режимов ization), потери на трение в зависимости от расходного объемного газосодержания. Результаты качественно описывают и визуализируют структуру исследуемого двухфазного потока и подтверждают значительное смещение газовой фазы в верхнюю часть канала, что может привести к возникновению анизотропии распределения напряжений трения по сечению и, как следствие, к изменению интегральных характеристик потока, в том числе потерь давления. Полученные данные могут быть использованы для построения моделей, применяющихся в теплогидравлических расчетах при обосновании безопасности современ-Поступила в редакцию 18.06.2018 ных проектов ядерных энергетических установок. © МГТУ им. Н.Э. Баумана, 2018

Введение. Двухфазные потоки широко распространены в тепловой и атомной энергетике [1–3]. Их применение в контурах охлаждения ядерных энергетических установок (ЯЭУ) в режиме естественной циркуляции (ЕЦ) как в условиях нормальной эксплуатации, так и в аварийных ситуациях обусловлено отсутствием необходимости в использовании насосного оборудования [4].

Двухфазные течения характеризуются сложными процессами взаимодействия фаз и двухфазной системы в целом со стенками каналов [5]. В связи с этим для разработки моделей течения двухфазных сред, в том числе в режиме ЕЦ, применяемых при обосновании безопасности современных проектов ЯЭУ, необходимы экспериментальные данные о структурных характеристиках течений: распределение газовой (паровой) фаз по сечениям канала, скольжение фаз и т. д. Подобные исследования должны начинаться с накопления качественной визуальной информации о структуре и особенностях потока [6, 7]. Интегральные характеристики двухфазного потока (скорость циркуляции в режиме ЕЦ) также зависят от структуры течения по причине трения (потерь давления) на стенках канала. При сравнительно низких скоростях течения, характерных для режима ЕЦ, формирование и динамика структуры двухфазного потока в значительной степени определяются силой тяжести. Для наклонных каналов это влияние проявляется особенно сильно. Смещение газовой (паровой) фазы в поле силы тяжести в верхнюю часть сечения канала должно привести к существенной анизотропии распределения напряжений трения по периметру сечения канала. Следствием такого процесса будет изменение интегральных характеристик потока и потерь давления [8].

На сегодняшний день существует большое количество методов регистрации двухфазных потоков (оптические, ультразвуковые и т. д.). Среди бесконтактных оптических методов следует выделить метод цифровой трассерной визуализации, или PIV-метод [9, 10]. Одним из важнейших его преимуществ является от-сутствие возмущающего влияния на поток [11, 12].

Целью настоящего исследования являлось накопление данных по структуре двухфазных газожидкостных течений в режиме ЕЦ в наклонном канале при существенном влиянии массовых сил, а также визуализация картины течений и фиксация переходов (смены) картины режимов в зависимости от расходного объемного газосодержания и средней скорости смеси. Для решения поставленной задачи использовались широкие возможности PIV-метода.

Экспериментальная установка. Для проведения исследований была разработана и создана экспериментальная установка, предназначенная для моделирования двухфазного потока (воздух-вода). Установка представляет собой адиабатический контур циркуляции (рис. 1). В состав контура входит сменный

Рис. 1. Принципиальная схема экспериментальной установки:

1 — экспериментальный участок; 2 — бак-сепаратор; 3 — подводящий участок; 4 — опускной участок; 5 — высокоскоростная камера; 6 — ротаметр; 7 — устройство для подачи воздуха (пузырькообразователь); 8 — сильфон; 9 — ультразвуковой расходомер; 10 — импульсный лазер Структура восходящего двухфазного газожидкостного потока в режиме ...

экспериментальный участок 1 в виде цилиндрического вертикального канала, выполненного из трубы наружным диаметром 40 мм и толщиной стенки 5 мм из оргстекла, подводящего 3 и опускного 4 участков, бак-сепаратора 2, а также опорная конструкция. Наклон экспериментального участка фиксировали в положении 15° от вертикали. Воздух от компрессорной установки поступал через устройство для подачи воздуха (пузырькообразователь) 7 в нижнюю часть экспериментального участка, который предварительно заполняли водой, объемный расход при этом измеряли ротаметром 6. Содержание воздуха в тяговом участке определяло движущий напор естественной циркуляции в контуре экспериментальной установки. Расход воды в контуре измеряли ультразвуковым расходомером 9.

Рис. 2. Конструкция устройства подачи воздуха (пузырькообразователя):

Конструкция пузырькообразователя показана на рис. 2. Он представляет собой штуцер с установленной в него трубой диаметром 10 мм с просверленными на торцевой поверхности отверстиями. Устройство помещали непосредственно в центр нижнего основания экспериментального канала.

В состав экспериментальной установки входят высокоскоростная камера и лазерная установка (рис. 3), а также ПК со специализированным программным обеспечением (ПО), позволяющим синхронизировать работу устройств и обработать полученные данные о структуре потока.

Рис. 3. Лазерная установка

Программа экспериментов. Эксперименты выполняли для фиксированного углового положения рабочего участка (отклонение от вертикали 15°) при варьируемых значениях расхода воздуха в диапазоне 0,02...1,35 м³/ч и расходе во-

экспериментальный участок; 2 — пузырькообразователь;

ды до 3,15 м³/ч. PIV-методом регистрировали данные о структуре двухфазного потока, распределений газовой фазы по сечению канала, а также фиксировали переходы между режимами течений [13, 14].

Результаты исследований. Результаты проведенных исследований, полученные при регистрации двухфазного потока PIV-методом, представлены на рис. 4–6. Анализ показывает, что в области низких значений расходных объемных газосодержаний

$$\beta = \frac{Q''}{Q' + Q''},$$

где Q' и Q" — объемные расходы соответственно жидкой и газовой фаз, м³/ч, для пузырькового ($\beta_{пуз} = 0,050...0,095$) и снарядного ($\beta_{снар} = 0,10...0,21$) режимов течения (см. рис. 4 и 5) наблюдается значительное смещение газовой фазы в верхнюю часть сечения канала. Это явление обусловлено наклоном канала и значительным влиянием массовых сил (течение двухфазного потока в поле силы тяжести) при сравнительно низких значениях средних скоростях смеси

$$W_{\rm cm} = \frac{Q' + Q''}{F},$$

где *F* — площадь поперечного сечения канала, м², реализуемых в режиме ЕЦ.

Рис. 4. Пузырьковый режим течения при ($\beta_{пуз} = 0,050...0,095$)

Рис. 5. Снарядный режим течения при ($\beta_{chap} = 0, 10...0, 21$)

Сильное смещение пузырей происходит и при увеличении расходов фаз и формирования эмульсионного режима ($\beta_{_{Эмул}} = 0,22...0,29$), см. рис. 6.

Рис. 6. Эмульсионный режим течения при $\beta_{_{ЭМУЛ}} = 0,22 \dots 0,29$

Карта режимов течений, составленная по результатам исследований, представлена на рис. 7. Показано, что вследствие наклона канала наблюдается более ранний переход между режимами (пузырьковый — снарядный — эмульсионный) по сравнению с вертикальными каналами при прочих равных характеристиках рассматриваемого двухфазного потока (геометрия канала, расходы фаз) [9, 10]. Данное явление может существенно повлиять на эффективность теплоотвода в контурах охлаждения ЯЭУ.

Рис. 7. Карта режимов течений

Заключение. В работе представлены результаты экспериментального исследования структуры восходящего двухфазного газожидкостного потока в режиме ЕЦ в наклонном канале (отклонение от вертикали 15°) в условиях существенного влияния массовых сил. PIV-методом получены картины течений и выявлена структура потока для пузырькового, снарядного и эмульсионного режимов в диапазоне расходного объемного газосодержания 0,05...0,29, изучены особенности и построена карта режимов в координатах расходного объемного газосодержания и средней скорости смеси.

Показано, что при сравнительно низких скоростях течения, характерных для ЕЦ, влияние на динамику структуры двухфазного потока в значительной степени оказывают сила тяжести и наклон канала. Происходит смещение газовой фазы к верхней части сечения канала, которое может привести к изменению гидродинамических характеристик потока, увеличению потерь давления, а также к возникновению неравномерностей коэффициентов теплоотдачи и ухудшению теплосъема в каналах охлаждения ЯЭУ.

Полученные результаты можно использовать при разработке и верификации физических и математических моделей, применяющихся в теплогидравлических расчетах контуров охлаждения с двухфазными потоками, а также при обосновании безопасности проектов современных установок.

Литература

- [1] Адамов Е.О., Драгунов Ю.Г., Орлов В.В. *Машиностроение ядерной техники*. Т. 4. Кн. 1. Москва, Машиностроение, 2005, 960 с.
- [2] Емельянов И.Я., Михан В.И., Солонин В.И. Конструирование ядерных реакторов. Москва, Энергоиздат, 1982, 400 с.
- [3] Петухов Б.С., Генин Л.Г., Ковалев С.А. Теплообмен в ядерных энергетических установках. Москва, Энергоатомиздат, 1986, 472 с.
- [4] Ильченко А.Г., Зуев А.Н., Харитонин И.Е. Исследование работы энергоблока ВВЭР-1000 в режиме естественной циркуляции теплоносителя. Вестник Ивановского государственного энергетического университета, 2008, № 2, с. 49–52.
- [5] Кашинский О.Н., Курдюмов А.С., Рандин В.В. Трение на стенке в восходящем снарядном течении в вертикальной трубе. *Теплофизика и аэромеханика*, 2006, т. 13, № 3, с. 410–416.
- [6] Драгунов Ю.Г., Быков М.А., Василенко В.А., Мигров Ю.А. Опыт применения и развитие расчетного кода корсар для обоснования безопасности АЭС с ВВЭР. *Теплоэнергетика*, 2006, № 1, с. 43–47.
- [7] Миронов Ю.В., Радкевич В.Е., Журавлева Ю.В., Кузин А.В., Мокроусов К.А., Яшников Д.А. Верификация теплогидравлических моделей кодов улучшенной оценки на примере модели двухфазного потока кодов RELAP5 и КОР-САР. Атомная энергия, 2004, т. 97, № 6, с. 446–450.
- [8] Гизадулин Р.А. Закономерности распределения газовой фазы в жидкости при продувке снизу. Вестник ЮУрГУ. Сер. Металлургия, 2006, № 7, с. 63–68.
- [9] Солонин В.И., Перевезенцев В.В., Исаков Н.Ш., Кузеро В.Б. Структура двухфазного адиабатического потока в режиме барботажа воздуха в заполненном

водой вертикальном цилиндрическом канале. *Машиностроение и компьютерные технологии*, 2014, № 6. URL: http://technomag.bmstu.ru/doc/713566.html.

- [10] Перевезенцев В.В., Исаков Н.Ш. Диагностика двухфазных течений в вертикальных каналах в режиме естественной циркуляции по пристеночным пульсациям давления. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2015, № 3, с. 17–29.
- [11] Bhagwat S.M., Ghajar A.J. Experimental investigation of non-boiling gas-liquid two phase flow in upward inclined pipes. *Experimental Thermal and Fluid Science*, 2016, vol. 79, pp. 301–318.
- [12] Jagan V., Satheesh A. Experimental studies on two phase flow patterns of airwater mixture in a pipe with different orientations. *Flow Measurement and Instrumentation*, 2016, vol. 52, pp. 170–179.
- [13] Thanh K.S., Kwang H.N., Hwan S.H., Hyun Y.S. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system. *Nuclear Engineering and Design*, 2017, vol. 316, pp. 75–88.
- [14] Saisorn S., Wongwises S. Adiabatic two-phase gas-liquid flow behaviors during upward flow in a vertical circular micro-channel. *Experimental Thermal and Fluid Science*, 2015, vol. 69, pp. 158–168.

Мартынов Денис Романович — аспирант кафедры «Ядерные реакторы и установки» МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — Перевезенцев Владимир Васильевич, доктор технических наук, доцент, профессор кафедры «Ядерные реакторы и установки» МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

THE STRUCTURE OF THE RISING TWO-PHASE GAS-LIQUID FLOW IN THE NATURAL CIRCULATION MODE IN THE INCLINED PASSAGE UNDER THE CONDITIONS OF THE SIGNIFICANT IMPACT OF MASS FORCES

D.R. Martynov

denismartyn96@gmail.com SPIN-code: 6776-6623

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The authors have conducted experimental investigation of the rising two-phase flow structure in the natural circulation mode in the inclined passage allowing for the significant impact of mass forces. By means of the PIV- method we have obtained stream patterns of gas-liquid flow, revealed their structure and its peculiar features, recorded the change of modes depending on the volumet-	Nuclear reactor, hydrodynamics, two-phase flow, natural circulation, inclined passage, flow structure, visualization, PIV (Particle Image Visualization), friction losses
ric consumption gas content. The results fundamentally	
aescribe and visualize the structure of the examined two-	
the upper part of the passage which can result in the	
emergence of the anisotropy in friction stresses distribu-	
tion along the cross-section of the passage and, as a con-	
sequence, in the change of the integral characteristics of	
the flow including the pressure losses. The data received	
can be used for constructing the models applied in ther-	Received 18.06.2018
mohydraulic calculations when justifying the safety of	© Bauman Moscow State Technical
modern nuclear power plants projects.	University, 2018

References

- Adamov E.O., Dragunov Yu.G., Orlov V.V. Mashinostroenie yadernoy tekhniki. T. 4. Kn. 1 [Nuclear technique engineering. Vol. 4. P. 1]. Moscow, Mashinostroenie publ., 2005, 960 p.
- [2] Emel'yanov I.Ya., Mikhan V.I., Solonin V.I. Konstruirovanie yadernykh reaktorov [Nuclear reactor engineering]. Moscow, Energoizdat publ., 1982, 400 p.
- [3] Petukhov B.S., Genin L.G., Kovalev S.A. Teploobmen v yadernykh energeticheskikh ustanovkakh [Heat exchange in nuclear power plants]. Moscow, Energoatomizdat publ., 1986, 472 p.
- [4] Il'chenko A.G., Zuev A.N., Kharitonin I.E. Study on work of VVER-1000 power unit in natural coolant circulation mode. *Vestnik Ivanovskogo gosudarstvennogo energeticheskogo universiteta*, 2008, no. 2, pp. 49–52.
- [5] Kashinskiy O.N., Kurdyumov A.S., Randin V.V. Wall shear stress in an upward slug flow in a vertical tube. *Teplofizika i aeromekhanika*, 2006, vol. 13, no. 3, pp. 410–416. (Eng. version: *Thermophysics and Aeromechanics*, 2006, vol. 13. no. 3, pp. 381–385.)
- [6] Dragunov Yu.G., Bykov M.A., Vasilenko V.A., Migrov Yu.A. Experience with introduction and development of the KORSAR computer code for substantiating the safety of NPSs with type VVER reactors. *Teploenergetika*, 2006, no. 1, pp. 43–47. (Eng. version: *Thermal Engineering*, 2006, vol. 53, no. 1, pp. 43–47.)

The structure of the rising two-phase gas-liquid flow in the natural circulation mode ...

- [7] Mironov Yu.V., Radkevich V.E., Zhuravleva Yu.V., Kuzin A.V., Mokrousov K.A., Yashnikov D.A. Verification of the thermohydraulic models used in improved-assessment codes for the RELAP5 and KORSAR two-phase flow models. *Atomnaya energiya*, 2004, vol. 97, no. 6, pp. 446–450. (Eng. version: *Atomic Energy*, 2004, vol. 97, no. 6, pp. 841–844.)
- [8] Gizadulin R.A. Distribution law of gas phase in liquid under down blow. Vestnik YuUr-GU. Ser. Metallurgiya [Bulletin of the South Ural State University. Series 'Metallurgy'], 2006, no. 7, pp. 63–68.
- [9] Solonin V.I., Perevezentsev V.V., Isakov N.Sh., Kuzero V.B. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water. *Mashinostroenie i komp'yuternye tekhnologii* [Mechanical Engineering and Computer Science], 2014, no. 6. Available at: http://technomag.bmstu.ru/doc/713566.html.
- [10] Perevezentsev V.V., Isakov N.Sh. Diagnostics of two-phase flows in vertical channels during the natural circulation by near-wall pressure pulsations. *Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr.* [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 3, pp. 17–29.
- [11] Bhagwat S.M., Ghajar A.J. Experimental investigation of non-boiling gas-liquid two phase flow in upward inclined pipes. *Experimental Thermal and Fluid Science*, 2016, vol. 79, pp. 301–318.
- [12] Jagan V., Satheesh A. Experimental studies on two phase flow patterns of air-water mixture in a pipe with different orientations. *Flow Measurement and Instrumentation*, 2016, vol. 52, pp. 170–179.
- [13] Thanh K.S., Kwang H.N., Hwan S.H., Hyun Y.S. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system. *Nuclear Engineering and Design*, 2017, vol. 316, pp. 75–88.
- [14] Saisorn S., Wongwises pp. Adiabatic two-phase gas-liquid flow behaviors during upward flow in a vertical circular micro-channel. *Experimental Thermal and Fluid Science*, 2015, vol. 69, pp. 158–168.

Martynov D.R. — Post-graduate, Department of Nuclear Reactors and Power Plants, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — V.V. Perevezentsev, Dr. Sc. (Eng.), Professor, Department of Nuclear Reactors and Power Plants, Bauman Moscow State Technical University, Moscow, Russian Federation.