DOI: 10.18698/2541-8009-2018-05-312

ПОСТРОЕНИЕ КОМПРОМИССНОЙ КРИВОЙ ДИАМЕТР НАСОСА — ЗАТРАЧЕННАЯ МОЩНОСТЬ ДЛЯ ОСЕВОГО НАСОСА

А.А. Протопопов	proforg6@yandex.ru
	SPIN-код: 4175-5118
Д.А. Вдовин	da_vdovin@mail.ru
	SPIN-код: 5444-6106

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

УДК 621.67

Аннотация	Ключевые слова
При разработке осевых насосов для авиационной техники наиболее важными характеристиками являются их масса и потребляемая мощность. Разработке методики построения компромиссной кривой для определения оптимальных параметров с помощью ЛП-тау-поиска было посвящено множе- ство публикаций. Теперь необходимо выяснить, насколько эта методика пригодна для конкретных инженерных расчетов. В предыдущем исследовании было отмечено, что применение ЛП-тау-поиска оправдывает себя для маломощных насосов, но также нужно определить способы получения досто- верных данных при сравнительно малой трате ресурсов на их поиски. С этой целью применен без- размерный обобщенный критерий качества, опре-	Насос, гидромотор, гидромаши- на, расход, математическая модель, напор, частота враще- ния, авиация, коэффициент качества
деляющий, насколько данная расчетная точка при-	Поступила в редакцию 10.04.2018
годна для практического применения.	© МГТУ им. Н.Э. Баумана, 2018

К основным характеристикам гидромашин для авиационной техники относят их массу и потребляемую мощность, причем масса должна быть минимальной, а коэффициент полезного действия — максимальным. При увеличении размеров гидромашин оба параметра возрастают, поэтому необходимо найти оптимальный диаметр насоса, при котором будет достигнут довольно высокий коэффициент полезного действия при условии сохранения малой массы — приоритетного параметра для авиации. Дополнительно уменьшить массу насоса можно благодаря применению высокооборотных машин со сравнительно малым напором, поэтому в данном исследовании рассмотрим гидравлический агрегат, состоящий из осевого насоса и аксиально-поршневого мотора с наклонным диском. Поскольку масса напрямую связана с габаритами гидромашины, а оценка габаритов представляет собой более простую задачу, будем косвенно оценивать массу по радиальному габариту рабочего колеса осевого насоса. В то же время, так как КПД напрямую зависит от затраченной мощности, изменение КПД будем оценивать по изменению затраченной мощности. В предыдущих исследованиях [1–5] была построена компромиссная кривая, определяющая оптимальные соотношения для затраченной мощности и диаметра рабочего колеса (следовательно, и для массы). Методика оказалась пригодной для осевых насосов малой мощности. Отметим, что в литературе [6–10] для решения задачи расчета динамических насосов повсеместно применяются методы гидродинамического моделирования. К недостаткам этих методов можно отнести большие затраты человеческого и машинного времени, что обуславливает необходимость создания методики расчета, в которой не требуется прибегать к гидродинамическому моделированию. Отметим, что в литературе [11– 14] демонстрируется хорошая оптимизируемость динамических гидромашин по методам ЛП-тау-поиска. Таким образом, возникает возможность соединить известные методики расчета динамических гидромашин, такие как метод ЛП-таупоиска, с безусловной оптимизацией по какому-либо параметру и исключить прямое гидродинамическое моделирование для экономии машинного и человеческого времени.

Безусловную оптимизацию проводят по двум критериям — габариты и затраченная мощность. Оба параметра обезразмеривают путем отнесения к наибольшему значению каждого из критериев, и их веса принимают равными. Для исключения влияния знака этих параметров оба обезразмеренных критерия берут в квадрате.

Для оптимизации методики нужно установить количество точек для применения ЛП-тау-поиска, необходимых для точного расчета, не требующего чрезмерных затрат времени и ресурсов ПК. Отметим, что точность расчета по ЛП-тау-последовательности имеет свои ограничения, поскольку расчет осуществляется с некоторым запасом, учитывающим нежесткую характеристику осевого насоса и допускающим определенную погрешность.

Количество расчетных точек находят следующим образом. Вводят безразмерный обобщенный коэффициент качества Ф, который определяют согласно зависимости

$$\Phi = \left(\frac{D_{\rm rp}}{D_{\rm rpmax}}\right) + \left(\frac{N_3}{N_{\rm 3max}}\right)^2,$$

где $D_{\text{трmax}}$ и $N_{\text{зmax}}$ — значения максимального диаметра и максимальной затраченной мощности, полученной из [1]. Чем меньше данный коэффициент, тем лучше качество осевого насоса.

После вычисления обобщенного коэффициента качества для 64 точек выбирают его минимальные значения для определенного числа точек: 4, 8, 16, 32 и 64. Затем строят зависимость $\Phi_{\min}(n)$, где Φ_{\min} — минимальное значение обобщенного коэффициента качества для данного количество точек; n — количество точек. В таблице приведены значения обобщенного коэффициента качества Φ в различных точках, а на рисунке показано изменение минимального значения этого коэффициента в зависимости от количества точек.

равного диаметру насоса			
Номер точки	№3, Вт	<i>D</i> _{тр} , м	Φ
1	861	0,047	0,220
2	454	0,043	0,177
3	1892	0,057	0,362
4	438	0,048	0,220
5	2795	0,072	0,610
6	948	0,053	0,279
7	756	0,036	0,131
8	278	0,042	0,167
9	1024	0,049	0,243
10	1505	0,068	0,471
11	879	0,040	0,163
12	855	0,060	0,351
13	688	0,038	0,143
14	730	0,046	0,208
15	5419	0,082	1,089
16	424	0,052	0,258
17	5217	0,099	1,346
18	1062	0,060	0,357
19	771	0,038	0,145
20	1378	0,075	0,539
21	800	0,041	0,168
22	472	0,038	0,140
23	1457	0,047	0,241
24	528	0,053	0,269
25	545	0,036	0,127
26	532	0,043	0,179
27	2257	0,059	0,407
28	393	0,041	0,161
29	1436	0,052	0,287
30	2879	0,080	0,732
31	1118	0,041	0,178
32	291	0,045	0,192
33	1335	0,056	0,323
34	3268	0,098	1,071
35	1024	0,043	0,191
36	623	0,055	0,291
37	594	0,036	0,128
38	596	0,043	0,180
39	2791	0,063	0,495
40	896	0,068	0,448
41	677	0,040	0,158
42	400	0,038	0,139
43	1190	0,045	0,213

Построение компромиссной кривой диаметр насоса — затраченная мощность ... Расчетные точки потребляемой мощности и диаметра трубопровода,

Политехнический молодежный журнал. 2018. № 5

			Окончание табл
Номер точки	<i>N</i> ₃, Вт	$D_{ m тр}$, м	Φ
44	612	0,051	0,251
45	3267	0,074	0,682
46	1073	0,053	0,283
47	814	0,036	0,132
48	768	0,066	0,420
49	633	0,040	0,157
50	662	0,049	0,233
51	8031	0,103	2,000
52	350	0,041	0,160
53	1244	0,050	0,26
54	2104	0,073	0,571
55	1015	0,04	0,167
56	386	0,046	0,202
57	1957	0,063	0,433
58	797	0,050	0,246
59	696	0,035	0,123
60	2413	0,089	0,837
61	952	0,043	0,188
62	556	0,039	0,148
63	1829	0,050	0,288
64	335	0,049	0,228

А.А. Протопопов, Д.А. Вдовин

Распределение выбранных точек

Для успешного применения ЛП-тау-последовательности при нахождении компромисса между массой и потребляемой мощностью при варьировании напора и относительного времени работы необходимо использовать не менее 32 точек. Это хорошо видно на примере полученной кривой: при рассмотрении 64 точек ЛП-тау-последовательности график $\Phi_{\min}(n)$ медленно приближается к форме горизонтальной прямой при n > 16.

Построение компромиссной кривой диаметр насоса — затраченная мощность ...

Таким образом, изложенную выше методику можно рекомендовать к использованию при расчетах высокооборотных осевых насосов небольшой мощности при сравнительно большом числе точек и наличии программных пакетов, способных облегчить обработку данных и графическое построение компромиссной кривой. Очевидно, что дальнейшее увеличение количества точек, полученных методом ЛП-тау-поиска, не приведет к существенному улучшению характеристик осевого насоса. В то же время отказ от гидродинамического моделирования в пользу более простых оценочных расчетов даже для случая 64 расчетных точек даст экономию машинного и человеческого времени при условии применения автоматических методов расчета основных конструктивных параметров осевых насосов.

Литература

- Петров А.И., Исаев Н.Ю. Гидродинамическое моделирование работы центробежного насоса в зоне отрицательных подач. Гидравлика, 2017, № 3. URL: http://hydrojournal.ru/item/60-gidrodinamicheskoe-modelirovanie-rabotytsentrobezhnogo-nasosa-v-zone-otritsatelnykh-podach.
- [2] Петров А.И., Исаев Н.Ю. Исследование работы лопастного насоса в зоне отрицательных подач методами гидродинамического моделирования. *Научное обозрение*, 2017, № 13, с. 74–78.
- [3] Петров А.И., Валиев Т.З. Расчет процесса пуска центробежного насоса методами гидродинамического моделирования. Гидравлика, 2017, № 3. URL: http://hydrojournal.ru/item/59-raschet-protsessa-puska-tsentrobezhnogo-nasosametodami-gidrodinamicheskogo-modelirovaniya.
- [4] Петров А.И. Методика непрерывного получения характеристик лопастного насоса для переменной температуры и вязкости рабочей жидкости при испытаниях в термобарокамере. Инженерный вестник, 2016, № 10. URL: http://ainjournal.ru/doc/850931.html.
- [5] Петров А.И. Системы поддержания теплового баланса в современных стендах для испытаний лопастных насосов. *Машины и установки: проектирование, разработка и эксплуатация*, 2015, № 5. URL: http://maplants.elpub.ru/jour/article/view/24.
- [6] Артемов А.В., Петров А.И. Современные тенденции развития конструкций стендов для испытаний лопастных насосов. Инженерный вестник, 2012, № 11. URL: http://engsi.ru/doc/500480.html.
- [7] Петров А.И., Арувелли С.В. Современные тенденции развития насосов для систем жидкостного охлаждения бортового и наземного радиоэлектронного оборудования. Инженерный вестник, 2015, № 11. URL: http://ainjournal.ru/doc/820059.html.
- [8] Петров А.И., Трошин Г.А. Методы модификации проточной части нефтяных магистральных насосов типа НМ. Инженерный вестник, 2014, № 11. URL: http://engsi.ru/doc/744967.html.
- [9] Гуськов А.М., Ломакин В.О., Банин Е.П., Кулешова М.С. Минимизация гемолиза и повышение гидродинамической эффективности насоса крови путем оптимизации формы проточной части. Медицинская техника, 2017, № 4(304), с. 1–4.
- [10] Ломакин В.О., Кулешова М.С., Чабурко П.С., Баулин М.Н. Комплексная оптимизация проточной части герметичного насоса методом ЛП-ТАУ поиска. *Насосы. Турбины. Системы*, 2016, № 1, с. 55–61.

- [11] Гуськов А.М., Ломакин В.О., Банин Е.П., Кулешова М.С. Оценка гемолиза в осевом насосе вспомогательного кровообращения. *Медицинская техника*, 2016, № 4, с. 12–15.
- [12] Ломакин В.О., Кулешова М.С., Божьева С.М. Численное моделирование течения жидкости в насосной станции. Гидротехническое строительство, 2015, № 8, с. 13–16.
- [13] Кулешова М.С., Гетманцева Е.В., Чабурко П.С. Исследование течений в направляющем аппарате канального типа центробежного насоса типа ЦНС методами гидродинамического моделирования. *Молодежный научно-технический вестник*, 2014, № 3. URL: http://ainsnt.ru/doc/711644.html.
- [14] Полуэктов Д.А., Кулешова М.С. Возможности модернизации грунтовых насосов на основе современных компьютерных технологий гидродинамического моделирования. Молодежный научно-технический вестник, 2013, № 12. URL: http://ainsnt.ru/doc/649581.html.

Протопопов Александр Андреевич — ассистент кафедры «Гидромеханика, гидромашины и гидропневмоавтоматика», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Вдовин Дмитрий Александрович — магистрант кафедры «Гидромеханика, гидромашины и гидропневмоавтоматика», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Constructing a compromise curve pump diameter — supplied power for the impeller pump

CONSTRUCTING A COMPROMISE CURVE PUMP DIAMETER — SUPPLIED POWER FOR THE IMPELLER PUMP

A.A. Protopopov	proforg6@yandex.ru
	SPIN-код: 4175-5118
D.A. Vdovin	da_vdovin@mail.ru
	SPIN-код: 5444-6106

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
When designing the impeller pumps for aeronautical equipment the most essential characteristics are their mass and supplied power. Numerous publications have been devoted to developing the methods of constructing a compromise curve for determining the optimal pa- rameters by means of LP-tau. Now it is necessary to find out to what extent this method is suitable for par- ticular engineering calculations. In the previous re- search we noted that the application of LP-tau is justi- fied for the low-flow pumps, but we also need to work out the ways to obtain reliable data while spending relatively little resources on its search. With this in view, we use a nondimensional generalized performance	Pump, hydraulic motor, hydraulic unit, capacity rate, mathematical model, discharge head, rotational frequency, aviation, quality coefficient
criterion that defines how much this computational	© Bauman Moscow State Technical
point is suited for practical application.	University, 2018

References

- Petrov A.I., Isaev N.Yu. Hydrodynamic modelling of centrifugal pump in the field of negative feeds. *Gidravlika*, 2017, no. 3. Available at: http://hydrojournal.ru/item/60gidrodinamicheskoe-modelirovanie-raboty-tsentrobezhnogo-nasosa-v-zoneotritsatelnykh-podach.
- [2] Petrov A.I., Isaev N.Yu. Study of the work of a vane-type pump in the area of adverse feeds by methods of hydrodynamic modeling. *Nauchnoe obozrenie* [Science Review], 2017, no. 13, pp. 74–78.
- [3] Petrov A.I., Valiev T.Z. Calculation of the process of starting a centrifugal pump using methods of computational fluid dynamics. *Gidravlika*, 2017, no. 3. Available at: http://hydrojournal.ru/item/59-raschet-protsessa-puska-tsentrobezhnogo-nasosa-metodami-gidrodinamicheskogo-modelirovaniya.
- [4] Petrov A.I. Method of continuous definition of impeller pump characteristics at fluctuating temperature and hydraulic fluid viscosity in process of test in low-pressure chamber. *Inzhenernyy vestnik* [Engineering Bulletin], 2016, no. 10. Available at: http://engsi.ru/doc/850931.html.
- [5] Petrov A.I. Systems of the heat balance maintenance in modern test benches for centrifugal pumps. *Mashiny i ustanovki: proektirovanie, razrabotka i ekspluatatsiya* [Machines and Plants: Design and Exploiting], 2015, no. 5. Available at: http://maplants.elpub.ru/jour/article/view/24.

Politechnical student journal. 2018. no. 5

- [6] Artemov A.V., Petrov A.I. Modern trends of developing test bench constructions for impeller pump. *Inzhenernyy vestnik* [Engineering Bulletin], 2012, no. 11. Available at: http://engsi.ru/doc/500480.html.
- [7] Petrov A.I., Aruvelli S.V. Modern development trends for pumps for liquid-cooling system of onboard and ground radio-electronic equipment. *Inzhenernyy vestnik* [Engineering Bulletin], 2015, no. 11. Available at: http://ainjournal.ru/doc/820059.html.
- [8] Petrov A.I., Troshin G.A. Modification method for flow channel of oil export pumps of MN-type. *Inzhenernyy vestnik* [Engineering Bulletin], 2014, no. 11. Available at: http://engsi.ru/doc/744967.html.
- [9] Gus'kov A.M., Lomakin V.O., Banin E.P., Kuleshova M.S. Minimization of hemolysis and improvement of the hydrodynamic efficiency of a circulatory support pump by optimizing the pump flowpath. *Meditsinskaya tekhnika*, 2017, no. 4(304), pp. 1–4. (Eng. version: *Biomedical Engineering*, 2017, vol. 51, no. 4, pp. 229–233.)
- [10] Lomakin V.O., Kuleshova M.S., Chaburko P.S., Baulin M.N. Complex wet end part optimization of hermetic pump with LP-TAU method. *Nasosy. Turbiny. Sistemy* [Pumps. Turbines. Systems], 2016, no. 1, pp. 55–61.
- [11] Gus'kov A.M., Lomakin V.O., Banin E.P., Kuleshova M.S. Assessment of hemolysis in a ventricular assist axial flow blood pump. *Meditsinskaya tekhnika*, 2016, no. 4, pp. 12–15. (Eng. version: *Biomedical Engineering*, 2016, vol. 50, no. 4, pp. 233–236.)
- [12] Lomakin V.O., Kuleshova M.S., Bozh'yeva S.M. Numerical modeling of liquid flow in a pump station. *Gidrotekhnicheskoe stroitel'stvo*, 2015, no. 8, pp. 13–16. (Russ. ed.: *Power Technology and Engineering*, 2016, vol. 49, no. 5, pp. 324–327.)
- [13] Kuleshova M.S., Getmantseva E.V., Chaburko P.S. Study on flows in channel-type guiding device of CNS centrifugal pump using hydrodynamic simulation methods. *Molodezhnyy* nauchno-tekhnicheskiy vestnik, 2014, no. 3. Available at: http://ainsnt.ru/doc/711644.html.
- [14] Poluektov D.A., Kuleshova M.S. Upgradeability of soil pumps based on modern computer technologies of hydrodynamic simulation. *Molodezhnyy nauchno-tekhnicheskiy vestnik*, 2013, no. 12. Available at: http://ainsnt.ru/doc/649581.html.

Protopopov A.A. — Assistant, Department of Fluid Mechanics, Hydraulic Machines and Hydraulic and Pneumatic Automation, Bauman Moscow State Technical University, Moscow, Russian Federation.

Vdovin D.A. — Master's Degree student, Department of Fluid Mechanics, Hydraulic Machines and Hydraulic and Pneumatic Automation, Bauman Moscow State Technical University, Moscow, Russian Federation.