РАЗРАБОТКА ФУНКЦИОНАЛЬНОЙ СХЕМЫ ОПТИЧЕСКОГО СИГНАЛИЗАТОРА ДЫМА НА ОСНОВЕ ЭФФЕКТА ТИНДАЛЯ

А.В. Дьяконов

fiximpression@gmail.com SPIN-код: 6945-3429

МГТУ им.	Н.Э. І	Баумана,	Москва,	Российская	Федерация

Аннотация	Ключевые слова
Аннотация: Разрабатываемый оптический сигнали- затор предназначен для селективного обнаружения истична дыма или пыли в неоднородных средах (езеесь	Датчик дыма, эффект Тиндаля, теория Ми, рассеяние света
частиц в воздухе). Работа датчика основана на эф-	
фекте Тиндаля, который позволяет в зависимости от	
диаметра частицы определить ее принадлежность к	
тому или иному типу. Построение математической	
модели для описания работы прибора выполнено с	
помощью аппарата теории Ми: рассчитаны индика-	
трисы рассеяния для частиц разных диаметров.	
В результате анализа математической модели разра-	
ботана функциональная схема оптического сигнали-	
затора. На основе функциональной схемы определен	
принцип действия разрабатываемого устройства.	
В результате работы получены основные характери-	
стики, необходимые для проведения светоэнергетиче-	Поступила в редакцию 13.11.2017
ского расчета и будущей реализации прибора.	© МГТУ им. Н.Э. Баумана, 2017

Во многих областях промышленности актуальной является проблема возникновения пожара на территории помещений предприятия, в салоне различных видов транспорта и т. п. Для решения этой проблемы применяют предупреждающие о начале возгорания датчики дыма [1].

Актуальность разработки сигнализаторов дыма обусловлена в первую очередь проблемами в авиационной безопасности. Причиной большей части аварий или катастроф, связанных с полетами судов гражданской авиации, являются «холостые» срабатывания существующих датчиков возгорания или, напротив, их несвоевременное срабатывание [2]. Отметим также, что для сертификации новых авиалайнеров типа MC-21 и «Сухой суперджет» необходимы системы детектирования дыма, не уступающие зарубежным аналогам.

Суть проблемы заключается в грубом распознавании датчиком частиц разных размеров. Цель рассматриваемой работы — построение функциональной схемы оптического сигнализатора дыма, удовлетворяющего следующим требованиям:

- высокая селективность частиц разных размеров;
- отношение сигнал/шум приемного устройства µ > 200;
- небольшие габаритные размеры.

Рис. 1. Схема флуоресценции

Существуют два основных способа решения данной проблемы: применение методов спектроскопии на основе явления флуоресценции [3] или анализ индикатрисс рассеяния частиц на основе эффекта Тиндаля.

Явление флуоресценции представляет собой смещение спектра поглощения атома в более длинноволновую зону, так называемый стоксов сдвиг (рис. 1). Возникновение этого сдвига обусловлено тем, что полученная системой энергия частично расходуется в безызлучатель-

ных процессах. Таким образом, испущенный после поглощения фотон имеет меньшую энергию, следовательно, бо́льшую длину волны.

Датчик, работа которого основана на эффекте флуоресценции, с высокой степенью точности способен детектировать тип частицы на основании полученных данных об изменении спектра поглощения и спектра флуоресценции. Однако для его реализации необходимы источник лазерного излучения и сложная система получения и обработки информации о спектральном составе исследуемого вещества. Проектирование устройства с учетом вышеперечисленных особенностей займет большое количество времени, при этом конечная стоимость продукта будет значительной.

Эффект Тиндаля представляет собой свечение оптически неоднородной среды в результате рассеяния проходящего через нее света. Он обусловлен дифракцией света на отдельных частицах среды или в коллоидах, где разница показателей преломления дисперсных частиц взвеси и окружающей среды достаточно высока. Эффект Тиндаля наблюдается в виде светлого конуса на темном фоне (рис. 2) при пропускании светового пучка через рассеивающую дисперсную среду.

Рис. 2. Проявление эффекта Тиндаля в дисперсных средах

Для реализации датчика дыма на основе эффекта Тиндаля не требуется высокоинтенсивный лазерный источник, а система управления может быть разработана сравнительно простым способом. Именно на данном эффекте основан принцип работы проектируемого устройства.

Математическим обоснованием эффекта Тиндаля стала разработанная в 1908 г. теория рассеяния Ми [4]. В предположении, что частицы дыма и пыли, селекцию которых необходимо провести, представляют собой идеальные сферы, найдем угловые распределения интенсивности рассеяния света на этих частицах.

Основными параметрами для расчета являются Ми-коэффициенты *a_n* и *b_n*, которые определяют амплитуды рассеянных полей:

$$a_n = \frac{m^2 j_n(mx) [x j_n(x)]' - \mu_1 j_n(x) [mx j_n(mx)]'}{m^2 j_n(mx) [x h_n^{(1)}(x)]' - \mu_1 h_n^{(1)}(x) [mx j_n(mx)]'};$$
(1)

$$b_n = \frac{\mu_1 j_n(mx) [x j_n(x)]' - j_n(x) [mx j_n(mx)]'}{\mu_1 j_n(mx) [x h_n^{(1)}(x)]' - h_n^{(1)}(x) [mx j_n(mx)]'},$$
(2)

где $m = n + i\chi$ — комплексный показатель преломления частицы; n — показатель преломления частицы; χ — коэффициент поглощения; x = ka — размерный параметр; $k = 2\pi/\lambda$ — волновое число; a — радиус сферической частицы; μ_1 отношение магнитных проницаемостей частицы и среды; $j_n(mx)$ — сферическая функция Бесселя n-го порядка; $h_n^{(1)}$ — сферическая функция Ганкеля n-го порядка.

Покажем связь между сферическими и обыкновенными функциями Бесселя:

$$j_{(n)}(z) = \sqrt{\frac{\pi}{2z}} J_{(n+0,5)}(z);$$
(3)

$$y_{(n)}(z) = \sqrt{\frac{\pi}{2z}} Y_{(n+0,5)}(z), \tag{4}$$

где J(z) и Y(z) — функции Бесселя 1-го и 2-го рода соответственно. Сферические функции Бесселя нулевого и первого порядков можно записать в следующем виде:

$$j_{0}(z) = \frac{\sin z}{z}, \ j_{0}(z) = \frac{\sin z}{z};$$
$$j_{1}(z) = \frac{\sin z}{z^{2}} - \frac{\cos z}{z};$$
$$y_{0}(z) = -\frac{\cos z}{z};$$
$$y_{1}(z) = -\frac{\cos z}{z^{2}} - \frac{\sin z}{z}.$$

Сферическая функция Ганкеля представляет собой линейную комбинацию *j_n* и *y_n* :

$$h_n^{(1)}(z) = j_n(z) + iy_n(z).$$

В нашем случае мы принимаем магнитные проницаемости среды и частицы равными, значит, μ₁ = 1, тогда уравнения (1)–(4) примут вид

$$a_{n} = \frac{m^{2} j_{n}(mx)[xj_{n}(x)]' - j_{n}(x)[mxj_{n}(mx)]'}{m^{2} j_{n}(mx)[xh_{n}^{(1)}(x)]' - h_{n}^{(1)}(x)[mxj_{n}(mx)]'};$$

$$b_{n} = \frac{j_{n}(mx)[xj_{n}(x)]' - j_{n}(x)[mxj_{n}(mx)]'}{j_{n}(mx)[xh_{n}^{(1)}(x)]' - h_{n}^{(1)}(x)[mxj_{n}(mx)]'}.$$

Для проведения дальнейшего светоэнергетического расчета необходимо получить индикатрисы рассеяния [5] для частиц заданных диаметров и показателей преломления в виде углового распределения интенсивности рассеянного света. Функции S_1 и S_2 характеризуют электрическое поле рассеяния E_s [6]. Рассеянное электрическое поле в сферических координатах для нормированной по амплитуде падающей волны можно описать следующим образом:

$$E_{s\theta} = \frac{e^{ikr}}{-ikr} \cos\varphi S_2(\cos\varphi);$$
$$E_{s\varphi} = \frac{e^{ikr}}{ikr} \sin\varphi S_1(\cos\theta),$$

амплитуды рассеяния при этом будут выражаться так:

$$S_{1}(\cos\theta) = \sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)} (a_{\pi}\pi_{n} + b_{\pi}\tau_{n});$$
$$S_{2}(\cos\theta) = \sum_{n=1}^{\infty} \frac{2n+1}{n(n+1)} (a_{\pi}\tau_{n} + b_{\pi}\pi_{n}),$$

где $E_{s\theta}$ — компонента рассеянного поля, определяемая падающим и рассеянным полями; $E_{s\theta}$ — ортогональная компонента. Угол φ (рис. 3) — угол между вектором падающего электрического поля и плоскостью рассеивания. Функции $\pi_n(\cos\theta)$ и $\tau_n(\cos\theta)$ описывают угловое распределение сферических гармоник, используемых для опсиания S_1 и S_2 . Следуя реккурентным соотношениям

$$\pi_{n} = \frac{2n-1}{n-1} \cos \theta \pi_{n-1} - \frac{n}{n-1} \pi_{n-2};$$

$$\tau_{n} = n \cos \theta \pi_{n} - (n+1) \pi_{n-1},$$

можно записать $\pi_0 = 0, \pi_1 = 1, \pi_2 = 3\cos\theta; \tau_0 = 0, \tau_1 = \cos\theta, \tau_2 = 3\cos2\theta.$

Рис. 3. Геометрическая модель сферической частицы

На основании вышеизложенного алгоритма, реализованного в среде MATLAB, рассчитаны индикатрисы рассеяния для частиц [7] диаметром 0,01 мкм (дым) и 1 мкм (пыль) с учетом заданных концентраций: 10⁻⁸ мкм⁻³ для частиц пыли и 3 · 10⁻³ мкм⁻³ для частиц дыма (рис. 4).

Рис. 4. Индикатриссы рассеяния, полученные в результате моделирования

Для реализации датчика дыма на основе эффекта Тиндаля разработана функциональная схема (рис. 5), которая позволяет детектировать интегральное значение светового потока, полученного при рассеянии частиц разного типа в определенном объеме. В соответствии с теорией Ми [8] с увеличением радиуса частицы форма индикатриссы рассеяния резко изменяется [9] от симметричной в прямом и обратном направлении рассеяния до резко асимметричной. Это позволило сравнить значения интегральных потоков в прямом и обратном направлении и на основании отношения данных потоков сделать вывод о преимущественном наличии частиц того или иного типа в исследуемом объеме.

Рис. 5. Функциональная схема оптического сигнализатора дыма:

СИД — светоизлучающий диод; ПИ1, ПИ2 — приемники излучения; ФОС 1, ФОС2, ФОС3 — формирующие оптические системы; γ — угол прямого канала; β — угол обратного канала

В результате проведенного исследования на основании математического аппарата теории Ми были рассчитаны индикатрисы рассеяния для частиц дыма и пыли. Используя резкий контраст в геометрии данных индикатрисс в зависимости от размера и показателей преломления частиц, можно проводить светоэнергетические расчеты [10] и вычислять конкретные значения интегральных потоков для прямого и обратного рассеяния. Полученные значения позволят перейти непосредственно к проектированию устройства оптического сигнализатора дыма.

Литература

- [1] Зубков Б.В., Бочкарев А.Н. Комплексные системы и методы обеспечения авиационной и пожарной безопасности на объектах воздушного транспорта. *Научный вестник МГТУ ГА*, 2008, № 137, с. 136–137.
- [2] Зайцев А. Чувствительность пожарных извещателей к различным типам дыма, пыли, пара и аэрозолям. *Алгоритм безопасности*, 2012, № 4, с. 24.
- [3] Bohren C.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York, A Wiley-Interscience publication, John Wiley & Sons, 1986, 545 p.
- [4] Белокопытов Г.В., Журавлев А.В. Дипольная поляризуемость сферических частиц. Физика волновых процессов и радиотехнические системы, 2008, т. 11, № 1, с. 41–49.
- [5] Петров М.П. Изучение рассеяния света дисперсными системами в электрическом поле. Дисс. ... канд. физ.-мат. наук. Санкт-Петербург, 2014, 127 с.

Разработка функциональной схемы оптического сигнализатора дыма ...

- [6] Mätzler C. MATLAB Functions for Mie Scattering and Absorption. Research Report, 2002, No. 8, p. 2.
- [7] Лисаков С.А., Павлов А.Н., Сыпин Е.В., Леонов Г.В. Моделирование ослабления оптического излучения в газодисперсной системе «угольная пыль — воздух». Фундаментальные исследования: электрон. научн. журн., 2015, № 12, с. 1. URL: https://www.fundamentalresearch.ru/ru/article/view?id=39407 (дата обращения 20.04.2017).
- [8] Шпольский Э.В. *Успехи физических наук*. Москва, Гос. изд-во техн.-теоретич. лит-ры, 1940, 127 с.
- [9] Hahn D.W. Light Scattering Theory. 2006. Available at: http://edge.rit.edu/edge/P07021/ public/Light%20Scattering%20Theory (date of access 12.09.2017).
- [10] Хорохоров А.М. Фотометрия. Законы теплового излучения. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2015, 46 с.

Дьяконов Андрей Валерьевич — студент кафедры «Лазерные и оптикоэлектронные системы», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — Вязовых Максим Вячеславович, доцент, кандидат технических наук, старший преподаватель кафедры «Лазерные и оптикоэлектронные системы», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

FUNCTIONAL DESIGN OF OPTICAL SMOKE SIGNALING DEVICE BASED ON TYNDALL EFFECT

A.V. Dyakonov

fiximpression@gmail.com SPIN-код: 6945-3429

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The study focuses on the optical signaling device being	Smoke detector, Tyndall effect, Mie
developed for selective detection of smoke or dust parti-	theory, light scattering
cles in inhomogeneous media (suspended matter in air).	
The work of the sensor is based on Tyndall effect, which,	
depending on the diameter of the particle, determines its	
belonging to a particular type. We constructed a math-	
ematical model for describing the operation of the de-	
vice by means of Mie theory, i.e we calculated the scat-	
tering indicatrix for particles of different diameters. As	
a result of the analysis of the mathematical model, a	
functional diagram of the optical signaling device was	
developed. According to the functional design, the oper-	
ating principle of the device being developed was deter-	
mined as well. Finally, we obtained the main character-	
istics necessary for the light-energy calculation and the	© Bauman Moscow State Technical
future implementation of the device.	University, 2017

References

- Zubkov B.V., Bochkarev A.N. Modern systems intended to ensure security of air transport. *Nauchnyy vestnik MGTU GA* [Scientific Bulletin of the Moscow State Technical University of Civil Aviation], 2008, no. 127, pp. 133–138 (in Russ.).
- [2] Zaytsev A.V The sensitivity of the fire detectors of different types of smoke, dust, vapor, aerosols. Part 2. *Algoritm bezopasnosti* [Algorithm safety], 2012, no. 4, pp. 24 (in Russ.).
- [3] Bohren C.F., Huffman D.R. Absorption and scattering of light by small particles. A Wiley-Interscience publication, John Wiley & Sons. N.Y., 1986. 545 p.
- [4] Belokopytov G.V., Zhuravlev A.V. Dipole polarizability of spherical particles. *Fizika* volnovykh protsessov i radiotekhnicheskie sistemy [Physics of Wave Processes and Radio Systems], 2008, vol. 11, no. 1, pp. 41–49 (in Russ.).
- [5] Petrov M.P. Izuchenie rasseyaniya sveta dispersnymi sistemami v elektricheskom pole. Diss. kand. fiz.-mat. nauk [Cand. phys.-math. sci. diss.]. St. Petersburg, 2014. 127 p. (in Russ.).
- [6] Mätzler C. MATLAB Functions for mie scattering and absorption. Research Report, 2002, no. 8, p. 2.
- [7] Lisakov S.A., Pavlov A.N., Sypin E.V., Leonov G.V. Computer simulation of optical radiation attenuation in dispersed system "coal dust air". *Fundamental'nye issledovaniya*.
 [Fundamental Research], 2015, no. 12-2, pp. 288–296. Available at: https://www.fundamental-research.ru/ru/article/view?id=39407.
- [8] Shpol'skiy E.V. Uspekhi fizicheskikh nauk. Moscow, Tekhn.-teoretich. lit. Publ., 1940. 127 p.

- [9] Hahn D.W. Light scattering theory. 2006. Available at: http://edge.rit.edu/edge/P07021/ public/Light%20Scattering%20Theory (accessed 12.09.2017).
- [10] Khorokhorov A.M. Fotometriya. Zakony teplovogo izlucheniya [The laws of thermal radiation]. Moscow, MGTU im. N.E. Baumana Publ., 2015. 46 p.

Dyakonov A.V. — student, Department of Laser and Optoelectronic Systems, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — Vyazovykh M.V., Cand. Sc. (Eng.), Assoc. Professor, Assist. Professor, Department of Laser and Optoelectronic Systems, Bauman Moscow State Technical University, Moscow, Russian Federation.