ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ГОРЕНИЯ АЭРОВЗВЕСИ ЧАСТИЦ АЛЮМИНИЯ С ИСПОЛЬЗОВАНИЕМ ФУНКЦИИ ПЛОТНОСТИ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТИ

Г.А. Щетинин

gashetinin@yandex.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Проанализированы существующие подходы к моде- лированию процессов воспламенения и горения по- рошкообразных металлических горючих. Рассмотре- на математическая модель для аэровзвеси частиц алюминия и предложена новая конечно-разностная схема для численного решения системы дифференци- альных уравнений. Показана хорошая сходимость	Воспламенение, горение, порош- кообразные металлические горю- чие, плотность распределения вероятности
полученных результатов расчета и данных, пред-	Поступила в редакцию 02.07.2017
ставленных в работе [1].	© МГТУ им. Н.Э. Баумана, 2017

В последние десятилетия область применения порошкообразных металлов постоянно растет: их используют в качестве добавок к горючему в смесевых твердотопливных композициях, предназначенных для ракетных двигателей. При добавлении порошкообразных металлов повышаются энергетические и массогабаритные характеристики двигательных установок. В то же время существует ряд известных ограничений, не позволяющих в полной мере реализовать энергетический потенциал порошкообразных металлических горючих (ПМГ), обусловленный особенностью процессов их воспламенения и горения [1, 2]. В связи с этим актуальной является задача создания численного метода и на его основе программного обеспечения, которое позволило бы исследовать процессы воспламенения и горения ПМГ. Данная работа посвящена апробированию новой разностной схемы для возможного дальнейшего использования в более сложных задачах (с введением второй пространственной координаты).

Физическая модель. ПМГ можно рассматривать как двухфазную среду, состоящую из газа и множества частиц горючего (дисперсная фаза). Газовая фаза описывается системой дифференциальных уравнений, содержащей уравнения неразрывности, сохранения компонентов, состояния идеального газа и баланса счетной концентрации частиц дисперсной фазы. Систему уравнений, описывающую эволюцию газовой фазы, можно представить в переменных Эйлера [1]:

$$\frac{\partial \rho}{\partial \tau} + \operatorname{div}(u\rho) = -\sum_{i} G_{i}; \tag{1}$$

$$p = (1 - z)\rho RT; \tag{2}$$

$$\rho C \frac{\partial T}{\partial \tau} + u \rho C \operatorname{grad} T = \operatorname{div} \left(\left(\lambda + \lambda_m \right) \operatorname{grad} T \right) + Q; \tag{3}$$

$$\rho \frac{\partial m_i}{\partial \tau} + \rho u \text{grad} m_i = \text{div} \left(\rho \left(D + D_m \right) \text{grad} m_i \right) \pm G_i; \tag{4}$$

$$\frac{\partial n}{\partial \tau} + \operatorname{div}(nu) = 0, \tag{5}$$

где ρ — плотность газа, кг/м³; т — модельное время; u — скорость газа, м/с; G_i — источниковый член, определяющий массовую скорость образования или исчезновения *i*-го компонента газа, кг/(м³·c); p — давление газа, Па; z — относительная массовая концентрация компонентов к-фазы (конденсированной фазы); R — универсальная газовая постоянная, R = 8,31 Дж/(моль-К); T — температура, К; C — теплоемкость, Дж/(кг-К); λ — коэффициент молекулярной теплопроводности газа, Вт/(м-К); $\lambda_{\rm T}$ — коэффициент турбулентной теплопроводности газа, Вт/(м-К); n_i — относительная массовая концентрация в газовий член, определяющий поток тепла в газовую фазу, Дж/(м³·с); m_i — относительная массовая концентрация *i*-го компонента газа; D — коэффициент молекулярной диффузии газа, м²/с; $D_{\rm T}$ — коэффициент турбулентной диффузии газа, м²/с; n — счетная концентрация частиц во всей расчетной области, 1/см³.

Источниковые члены в уравнениях (3) и (4) определяются следующим образом [1]:

$$Q = n_k \Delta H \frac{dm_k}{d\tau};$$
$$G_i = v_i n_k m_i \frac{dm_k}{d\tau},$$

где n_k — счетная концентрация частиц; m_k — относительная массовая концентрация частиц; v_i — мольный стехиометрический коэффициент; ΔH — тепловой эффект химической реакции, Дж/кг, — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция, и продукты реакции приняли температуру реагентов.

Реальные ПМГ являются полидисперсными, поэтому необходимо учитывать распределение частиц по размеру и температуре. Наиболее перспективным является использование функции плотности распределения вероятности (ПРВ), которую обозначим как *P*. В данной задаче ПРВ зависит от координаты *x*, радиуса r_k и температуры T_k частицы ПМГ. Произведение $P(t, x, r_k, T_k) dT_k dr_k$ описывает вероятность того, что значения радиуса и температуры частицы, находящейся в момент времени t в координате x, принадлежат интервалам $r_k \dots (r_k + dr_k)$ и $T_k \dots (T_k + dT_k)$.

Система, моделирующая дисперсную фазу, состоит из функции ПРВ, уравнений для потоков тепла, массы и счетной концентрации частиц [1]:

$$\begin{cases} \frac{\partial n_k}{\partial \tau} - \iint \frac{D_k^*}{X^2} \frac{\partial X^2}{\partial X} \frac{\partial n_k P}{\partial X} dr_k dT_k + \iint \frac{1}{X^2} \frac{\partial}{\partial X} X^2 u_k n_k P dr_k dT_k = 0; \\ \frac{\partial n_k P}{\partial \tau} - \frac{D_k^*}{X^2} \frac{\partial X^2}{\partial X} \frac{\partial n_k P}{\partial X} + \frac{1}{X^2} \frac{\partial}{\partial X} X^2 u_k n_k P + \frac{\partial \omega_k n_k P}{\partial T_k} + \frac{\partial f_k n_k P}{\partial r_k} = 0; \\ Q = \Delta H \iint 4\pi r_k^2 \rho_k n_k f_k P dT_k dr_k - \iint \frac{4}{3}\pi r_k^3 C_k \rho_k \omega_k n_k P dT_k dr_k; \\ G = K_{m0} \iint 4\pi r_k^2 \rho_k n_k f_k P dT_k dr_k, \end{cases}$$

где D_k^* — коэффициент диффузии; u_k — скорость частицы; ω_k — скорость изменения температуры частицы, К/с; f_k — скорость изменения радиуса частицы, м/с; K_{m0} — массовое стехиометрическое соотношение (соотношение между окислителем и горючим, удовлетворяющее уравнению элементарной одностадийной химической реакции); G — источниковый член, определяющий массовую скорость образования или исчезновения частиц.

Математическая модель. Перепишем систему уравнений (1)–(5), раскрыв математические функции градиента и дивергенции: для уравнения (1)

$$\frac{\partial \rho}{\partial \tau} + \frac{\partial (u\rho)}{\partial x} = -\sum_{j} G_{j};$$

$$\frac{\partial \rho}{\partial \tau} + u \frac{\partial \rho}{\partial x} + \rho \frac{\partial u}{\partial x} = -\sum_{j} G_{j};$$

для уравнения (3)

$$\rho C \frac{\partial T}{\partial \tau} + u \rho C \frac{\partial T}{\partial x} = \frac{\partial \left(\left(\lambda + \lambda_{\mathrm{T}} \right) \frac{\partial T}{\partial x} \right)}{\partial x} + Q;$$

для уравнения (4)

$$\rho \frac{\partial m_i}{\partial \tau} + \rho u \frac{\partial m_i}{\partial x} = \frac{\partial \left(\rho \left(D + D_{\tau} \right) \frac{\partial m_i}{\partial x} \right)}{\partial x} \pm G_i;$$

для уравнения (5)

$$\frac{\partial n}{\partial \tau} + n \frac{\partial u}{\partial x} + u \frac{\partial n}{\partial x} = 0.$$

Начальные значения давления, температуры и относительной массовой концентрации окислителя при $\tau = 0$:

$$p = 0,1 \text{ M}\Pi a, T^0 = 300 \text{ K}, u = u_0 = 1 \text{ m/c}.$$

В качестве горючего использован порошкообразный алюминий. В начальный момент времени воспламенение частиц осуществляется горячим газом, который находится во всем объеме $x_0 < x < x_{\infty}$ и имеет температуру $T_{ig} = \text{const} = 2300$ К. Скорость распространения фронта пламени рассчитывается по массовой скорости выгорания, находящегося в недостатке:

$$w_f = \begin{cases} \frac{1}{\rho_0} \int \langle G_{O_2} d \rangle X & \text{при } \alpha < 1; \\ \frac{2,21\alpha}{\rho_0} \int \langle G_k dX \rangle & \text{при } \alpha \ge 1. \end{cases}$$

Здесь ρ_0 — начальная плотность газа; $\langle G_{O_2} \rangle$ — осредненная по состоянию частиц скорость реагирования кислорода (окислителя); $\langle G_k \rangle$ — осредненная по состоянию частиц скорость реагирования алюминия; α — коэффициент избытка окислителя,

$$\alpha = \frac{\Delta m_p}{\left(m_k^0 - \Delta m_k\right) K_{m0}},$$

где Δm_p — изменение относительной массовой концентрации прореагировавшего окислителя; m_k^0 — начальная относительная массовая концентрация прореагировавшего алюминия; Δm_k — изменение относительной массовой концентрации прореагировавшего алюминия.

Граничные условия в предположении нормального закона распределения частиц имеют следующий вид:

$$x = x_0 : u = u_k, \rho = \rho_0, T = T_K^0, P = \gamma(r_k)\gamma(T_k - T_k^0);$$
$$x = x_\infty : \frac{\partial T}{\partial x} = \frac{\partial m}{\partial x} = \frac{\partial P}{\partial x} = 0,$$

где $\gamma(r_k)$ и $\gamma(T_k - T_k^0)$ — функции начального распределения частиц по радиусу и температуре,

$$\gamma(r_k) = \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{r_k - \langle r_k \rangle}{0, 18r_k^2}\right)^2}$$

Общая схема рассматриваемого процесса показана на рис. 1.

Рис. 1. Общая схема рассматриваемого процесса

В начальный момент времени частицы обладают заданными температурой T_k , радиусом r_k и скоростью u_k . При нагреве горячим газом параметры частиц меняются согласно рассматриваемым уравнениям.

Для повышения точности расчета температура, радиус частицы и координата пространства преобразованы в безразмерную форму следующим образом:

$$\begin{split} \theta_T &= \frac{T_k - T_k^0}{T_k^{\max} - T_k^0};\\ \theta_r &= \frac{r_k - r_k^{\min}}{r_k^{\max} - r_k^{\min}};\\ \theta_x &= \frac{x - x_0}{x_{\max} - x_0}, \end{split}$$

где T_k^{\max} = 2 300 K; r_k^{\min} = 0,5 мкм; r_k^{\max} = 6 мкм; x_0 = 49; x_{\max} = 51.

Разностная схема численного метода. Составим разностные схемы для каждой фазы. В газовой фазе известны тепловой эффект химической реакции и относительная массовая концентрация газообразных компонентов, а в дисперсной фазе (из результатов расчета) — источниковые члены, определяющие поток тепла в газовую фазу и массовую скорость образования или исчезновения *j*-го компонента газа, и скорость движения частиц. В газовой фазе необходимо найти плотность газа, давление, счетную концентрацию частиц, температуру газа и относительную массовую концентрацию частиц. Поэтому в этой фазе для вычисления параметров применим явно-неявную схему, причем плотность и счетную концентрацию частиц рассчитаем по явной схеме, а температуру и относительную массовую концентрацию — по неявной:

$$\frac{\rho_{i,j} - \rho_{i,j-1}}{h_{\tau}} + \frac{u_{i-\frac{1}{2},j} \left(\rho_{i,j} - \rho_{i-1,j}\right) + \rho_{i-\frac{1}{2},j} \left(u_{i,j} - u_{i-1,j}\right)}{h_{X}} = -\sum_{j} G_{j};$$
(6)

$$\rho C \frac{T_{i,j} - T_{i,j-1}}{h_{\tau}} + u\rho C \frac{T_{i,j} - T_{i-1,j}}{h_{X}} = \frac{\lambda_{i+1,j} T_{i+1,j} - 2\lambda_{i,j} T_{i,j} + \lambda_{i-1,j} T_{i-1,j}}{h_{X}^{2}} + Q;$$
(7)

$$\rho \frac{m_{i,j}^{k} - m_{i,j-1}^{k}}{h_{\tau}} + \rho u \frac{m_{i,j}^{k} - m_{i-1,j}^{k}}{h_{X}} = \rho \frac{D_{i+1,j}m_{i+1,j}^{k} - 2D_{i,j}m_{i,j}^{k} + D_{i-1,j}m_{i-1,j}^{k}}{h_{X}^{2}} + G_{i}; \qquad (8)$$

$$\frac{n_{i,j} - n_{i,j-1}}{h_{\tau}} + \frac{n_{i-\frac{1}{2},j} \left(u_{i,j} - u_{i-1,j}\right) + u_{i-\frac{1}{2},j} \left(n_{i,j} - n_{i-1,j}\right)}{h_{\chi}} = 0;$$
(9)
$$i = \overline{0; N_{\chi}}; \quad j = \overline{0; N_{\tau}}$$

где h_X и h_{τ} — шаг по координате и времени; N_X и N_{τ} — количество узлов по $u_{i-\frac{1}{2},j} = \frac{u_{i,j} - u_{i-1,j}}{2}.$

Учитывая физические особенности моделируемых процессов в дисперсной фазе, для расчета параметров используем явную схему:

$$\begin{split} \frac{n_{i,j}^{k} - n_{i,j-1}^{k}}{h_{\tau}} - \\ & -\sum_{T_{k}}^{T_{k}+dT_{k}} \sum_{r_{k}}^{k} D_{k}^{*} \frac{R}{3} \frac{\left(n^{k}P\right)_{i,j} - \left(n^{k}P\right)_{i,j-1}}{h_{X}} - \frac{1}{R^{2}} \frac{\left(R^{2}u_{k}n_{k}P\right)_{i,j} - \left(R^{2}u_{k}n_{k}P\right)_{i,j-1}}{h_{X}} = 0; \\ & \frac{\left(n^{k}P\right)_{i,j} - \left(n^{k}P\right)_{i-1,j}}{h_{\tau}} + D_{k}^{*} \frac{R}{3} \frac{\left(n^{k}P\right)_{i,j} - \left(n^{k}P\right)_{i,j-1}}{h_{X}} + \\ & + \frac{1}{R^{2}} \frac{\left(R^{2}u_{k}n_{k}P\right)_{i,j} - \left(R^{2}u_{k}n_{k}P\right)_{i,j-1}}{h_{X}} + \frac{\omega_{k}n^{k}P - \omega_{k}^{0}n^{k0}P^{0}}{h_{T_{k}}} + \frac{f_{k}n^{k}P - f_{k}^{0}n^{k0}P^{0}}{h_{r_{k}}} = 0; \\ & Q = \Delta H \sum_{T_{k}}^{T_{k}+dT_{k}}\sum_{r_{k}}^{r_{k}+dr_{k}} 4\pi r_{k}^{2}\rho_{k}n_{k}f_{k}P - \sum_{T_{k}}^{T_{k}+dT_{k}}\sum_{r_{k}}^{r_{k}+dr_{k}} \frac{4}{3}\pi r_{k}^{3}C_{k}\rho_{k}\omega_{k}n_{k}PdT_{k}dr_{k}du_{k}; \\ & G = K_{m0}\sum_{T_{k}}^{T_{k}+dT_{k}}\sum_{r_{k}}^{r_{k}+dT_{k}}\sum_{r_{k}}^{r_{k}+dT_{k}}\sum_{r_{k}}^{r_{k}+dT_{k}}\sum_{r_{k}}^{r_{k}+dT_{k}}} 4\pi r_{k}^{2}\rho_{k}n_{k}f_{k}P. \end{split}$$

где h_{T_k} и h_{r_k} — шаг по температуре частицы и радиусу частицы.

На рис. 2 приведены графические отображения используемых конфигураций узлов.

Рис. 2. Конфигурации явной (а) и неявной (б) узловых схем

В рассматриваемой задаче три параметра заданы в зависимости от температуры газа:

- коэффициент молекулярной теплопроводности газа

$$\lambda = 26, 2 \cdot 10^{-3} + (T - 300) \cdot 7, 6 \cdot 10^{-5}, BT/(M \cdot K);$$

- коэффициент молекулярной диффузии газа

$$D = 0,178 \cdot 10^{-4} - 4 \cdot \left(\frac{T}{273}\right), \quad \mathrm{m}^2/\mathrm{c};$$

- теплоемкость газа

$$C = 1 \cdot 10^3 + 0.87 \cdot (T - 300),$$
 Дж/(кг · К).

Скорости изменения радиуса и температуры частицы представлены в следующем виде [3]:

$$f_{k} = \frac{dr_{k}}{d\tau} = \frac{a \cdot 2^{n}}{n_{ok} p^{0,1} (T^{0})^{0,2}} nr^{(n-1)}, \quad \text{M/c};$$
$$\omega_{k} = \frac{dT_{k}}{d\tau} = \frac{Q}{4\pi r_{k}^{2} \left[\frac{(r_{k}C_{2}\rho_{2})}{3} + \delta_{1}C_{1}\rho_{1}\right]}, \quad \text{K/c}.$$

где n_{ok} — концентрация эффективности окислителя, индекс «1» обозначает параметры, относящиеся к продукту химической реакции (окисление), а индекс «2» — к исходным компонентам.

Проверим устойчивость предлагаемой явно-неявной разностной схемы, используя принцип максимума [4].

• Для уравнения (6)

$$\sum_{s} a_{s} \rho_{s} = \sum_{p} b_{p} \rho_{p} + \varphi,$$

где $a_s \rho_s$ и $b_p \rho_p$ — слагаемые, в которых значения плотности берутся на текущем и других расчетных слоях; φ — слагаемое, не зависящее явно от плотности. Получим

Максимальный по модулю коэффициент — a_0 .

• Для уравнения (7)

$$\sum_{s} a_{s} T_{s} = \sum_{p} b_{p} T_{p} + \varphi,$$

где $a_s T_s$ и $b_p T_p$ — слагаемые, в которых значения температуры берутся на текущем и других расчетных слоях; φ — слагаемое, не зависящее явно от температуры. Получим

$$a_{0} = \left(\frac{\rho C}{h_{\tau}} + \frac{u\rho C}{h_{X}} + \frac{2\lambda_{i,j}}{h_{X}^{2}}\right); a_{1} = \frac{-\lambda_{i+1,j}}{h_{X}^{2}}; b_{0} = \frac{\rho C}{h_{\tau}}, \varphi = Q$$

Максимальный по модулю коэффициент — a_0 .

• Для уравнения (8)

$$\sum_{s} a_{s} m_{s}^{k} = \sum_{p} b_{p} m_{p}^{k} + \varphi,$$

где $a_s m_s^k$ и $b_p m_p^k$ — слагаемые, в которых значения относительной массовой концентрации берутся на текущем и других расчетных слоях; φ — слагаемое, не зависящее явно от относительной массовой концентрации. Получим

Максимальный по модулю коэффициент — a_0 .

• Для уравнения (9)

$$\sum_{s} a_{s} m_{s}^{k} = \sum_{p} b_{p} m_{p}^{k} + \varphi,$$

где $a_s u_s$ и $b_p u_p$ — слагаемые, в которых значения скорости берутся на текущем и других расчетных слоях; φ — слагаемое, не зависящее явно от скорости. Получим

$$b_0 = \frac{1}{h_{\tau}}, \ \varphi = 0.$$

Максимальный по модулю коэффициент — a_0 .

Таким образом, по принципу максимума предлагаемая явно-неявная разностная схема устойчива.

Результаты расчета. На рис. 3 приведено распределение суммарного тепловыделения по пространственной координате x при коэффициенте избытка окислителя $\alpha = 0,5$ и 1,0. При увеличении коэффициента α уменьшается максимальное значение объемного тепловыделения *Q*, а также градиент всех параметров во фронте пламени.

Рис. 3. Распределение суммарного тепловыделения по пространственной координате *x* при коэффициенте избытка окислителя α = 0,5

На рис. 4 показан вид двумерной функции ПРВ во фронте пламени. Данный график характеризуется наличием двух локальных максимумов, соответствующих состоянию частиц, близкому к начальному, и горению в парофазном режиме, причем количество последних составляет ~18 %. Наиболее вероятно нахождение частицы во фронте пламени с параметрами $\theta_T \in [0,95;1]$ и $\theta_r \in [0;0,05]$.

Рис. 4. Функция ПРВ во фронте пламени в проекции на оси θ_T и θ_r при коэффициенте избытка окислителя $\alpha = 0,5$

На рис. 5 отображены зависимости скорости распространения фронта пламени от коэффициента избытка окислителя, соответствующие данным, полученным при расчете (синяя кривая) и представленным в работе [1] (красная кривая). Из рис. 5 следует, что при уменьшении α увеличивается w_b , что объясняется снижением температуры воспламенения аэровзвеси и возрастанием счетной концентрации частиц.

Рис. 5. Зависимость скорости распространения фронта пламени от коэффициента избытка окислителя α

На рис. 6 приведены графики, характеризующие структуру ламинарного пламени, из которых видно, что по мере продвижения в глубь пламени температура частиц θ_T и степень их выгорания q_k повышаются, а радиус частиц θ_r уменьшается. Наибольшее изменение градиента всех трех функций наблюдается во фронте пламени.

Рис. 6. Зависимость температуры θ_T , степени выгорания q_k и радиуса θ_r частиц от пространственной координаты

При известной функции плотности вероятности $P(x, r_k, T_k)$ можно проследить изменение фракционного состава частиц (рис. 7). Графики при x_0 отображают распределение частиц в точке $\theta_X = 0$, а при x_f и x_∞ — распределение частиц соответственно во фронте пламени и на правой границе пламени. Приведенные данные свидетельствуют о том, что по мере продвижения в глубь ламинарного пламени происходит преимущественное выгорание частиц мелкой и средней фракции, а количество сгоревших частиц во фронте составляет примерно 20 %. В сечении x_∞ преобладают частицы мелкой фракции с температурой, близкой к температуре горения.

Рис. 7. Графики функций ПРВ количества частиц:

При сравнении полученных данных с результатами расчета *w*₆, приведенными в работе [1], максимальное расхождение значений составило 8,3 %.

Выводы. Проанализированы процессы воспламенения и горения ПМГ. Создана математическая модель, описывающая рассматриваемые процессы для частиц алюминия.

Предложен и проверен на устойчивость численный метод решения системы дифференциальных уравнений, представленных в математической модели. Численный метод реализован в виде программного модуля. Выполнено сравнение полученных результатов с данными работы [1].

Литература

- [1] Ягодников Д.А. Воспламенение и горение порошкообразных металлов. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2009, 432 с.
- [2] Ягодников Д.А. Статическая модель горения боровоздушной смеси в турбулентном потоке. Физика горения и взрыва, 1996, т. 32, № 6, с. 29–46.
- [3] Похил П.Ф, Беляев А.Ф., Фролов Ю.В. Горение порошкообразных металлов в активных средах. Москва, Наука, 1972, 274 с.
- [4] Самарский А.А., Попов Ю.В. Разностные схемы газовой динамики. Москва, Наука, 1975, 352 с.

Щетинин Григорий Александрович — студент кафедры «Программное обеспечение ЭВМ и информационные технологии», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научные руководители — Т.Н. Романова, канд. физ.-мат. наук, доцент кафедры «Программное обеспечение ЭВМ и информационные технологии»; Д.А. Ягодников, д-р техн. наук, заведующий кафедрой «Ракетные двигатели», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

NUMERICAL SIMULATION OF ALUMINIUM PARTICLE AEROSOL COMBUSTION EMPLOYING A PROBABILITY DENSITY FUNCTION

G.A. Shchetinin

gashetinin@yandex.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

	Keywords
We analysed existing approaches to simulating ignition	Ignition, combustion, powdered
and combustion processes in powdered metal fuels. The	metal fuels, probability density
study considers a mathematical model of an aluminium	function
particle aerosol and suggests a new finite difference	
scheme for solving a system of differential systems nu-	
merically. We show good convergence between the	
computation results we obtained and the data presented	© Bauman Moscow State Technical
<i>in the publication [1].</i>	University, 2017

References

- [1] Yagodnikov D.A. Vosplamenenie i gorenie poroshkoobraznykh metallov [Inflammation and combustion of powder materials]. Moscow, Bauman Press, 2009, 432 p.
- [2] Yagodnikov D.A. Statistical model of flame-front propagation in a boron-air mixture. *Fizi-ka goreniya i vzryva*, 1996, vol. 32, no. 6, pp. 29–46. (Eng. version: *Combustion, Explosion, and Shock Waves*, 1996, vol. 32, no. 6, pp. 623–636).
- [3] Pokhil P.F, Belyaev A.F., Frolov Yu.V. Gorenie poroshkoobraznykh metallov v aktivnykh sredakh [Combustion of powder materials in active medium]. Moscow, Nauka publ., 1972, 274 p.
- [4] Samarskiy A.A., Popov Yu.V. Raznostnye skhemy gazovoy dinamiki [Combustion of powder materials of gas dynamics]. Moscow, Nauka publ., 1975, 352 p.

Shchetinin G.A. — student, Department of Computer Software and Information Technology, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisors — T.N. Romanova, Cand. Sc. (Phys.-Math.), Assoc. Professor, Department of Computer Software and Information Technology; D.A. Yagodnikov, Dr. Sc. (Eng.), Head of Department of Rocket Engines, Bauman Moscow State Technical University, Moscow, Russian Federation.