SIMULATING THE PROCESS OF COOLING THE HIGH TEMPERATURE FLOW IN EXPERIMENTAL GROUND RIGS BY MEANS OF WATER INJECTION

K.V. Polyakov

konstantin.vl.p@mail.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The article considers physical processes in the experi-	Split, diffusion, disintegration mod-
mental ground rigs used for aerospace engineering	el, cooling the high temperature
ground testing as well as the process of cooling combus-	flow
tion products by means of water injection into the ex-	
haust system gasdynamic contour. We calculated the	
parameters of the injected wash jet and numerically	
simulated the interacting processes of liquid droplets	
with gas flow (injection, split, evaporation etc.). This	
work examines the model and verificatory problems,	
justifying the methods of calculating the real stand	
systems operating at the inlet gas temperatures varying	
from 1000 to 3500 K, the pressure of about 12 bar	
and the subsonic velocity of the gas. By means of the	
software package we accomplished the simulation and	
defined the basic parameters of the outlet flow. For	
describing the motion of the droplets in the continuous	© Bauman Moscow State Technical
medium the discrete phase DPM model was used.	University, 2017

References

[1] Dobrovol'skiy M.V Zhidkostnye raketnye dvigateli [Liquid rocket engines]. Moscow, Bauman Press, 2016, 488 p.

[2] Garbaruk A.V., Strelets M.Kh., Shur M.L. Modelirovanie turbulentnosti v raschetakh slozhnykh techeniy [Turbulence modelling in complex flows calculation]. Sankt-Petersburg, SPbSTU publ., 2012, 88 p.

[3] de Feo D.M., Shaw S.T. Turbulence modeling and supersonic base flows. *45th AIAA Aerospace Sciences Meeting and Exhibit*, Reno, NV, 2007, AIAA 2007-1083.

[4] Ranz W.E., Marshal W.R. Evaporation from drops. Part I, Part II. *Chem. Eng. Prog.*, 1952, no. 48(4), pp. 141–146, pp. 173–180.

[5] ANSYS CFX 16.1 Theory Guide. Canonsburg, Ansys Inc., 2015.

Polyakov K.V. — student, Department of Thermophysics, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — Frantsuzov M.S., Assistant Lecturer of Thermophysics Department, Bauman Moscow State Technical University, Moscow, Russian Federation.