ИССЛЕДОВАНИЕ ДИНАМИКИ ИСПОЛНИТЕЛЬНОГО МЕХАНИЗМА ЭКЗОСКЕЛЕТА С УЧЕТОМ РЕАКЦИЙ ОПОРНОЙ ПОВЕРХНОСТИ

Ж.Н. Исабеков

janibek_23.93@mail.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Рассмотрена кинематическая схема древовидного исполнительного механизма экзоскелета. Уравнения динамики получены с использованием принципа Д'Аламбера. Представлены результаты исследо- вания динамики исполнительного механизма эк- зоскелета. Разработана 3D-модель исполнитель- ного механизма экзоскелета в программном комплек- се SolidWorks. В программном комплексе MATLAB	Экзоскелет, синтез кинемати- ческой структуры, уравнение динамики экзоскелета, матема- тической моделирование
построены зависимости моментов и мощностей в	Поступила в редакцию 15.06.2017
сочленениях от времени.	© МГТУ им. Н.Э. Баумана, 2017

Введение. Один из основных этапов создания робототехнических систем состоит в проведении математического моделирования их динамики. На сегодняшний день предложено множество методов для решения этой задачи. Методам математического описания кинематики и динамики исполнительных механизмов (ИМ) роботов посвящены публикации [1, 2]. По результатам обзора [3], следует, что в РФ имеется значительное отставание в этой области исследовании.

Разработки в робототехнических системах включает в себя большое число подзадач из различных сфер науки и техники [4]. Робот может быть на колесной платформе, гусеничным, шагающим или летающим. Он может иметь различные манипуляторы для взаимодействия с внешним миром и множество сенсоров, данные с которых необходимо принять и обработать. Без знаний кинематики, динамики, электроники, машинного зрения, навигации и других узкоспециализированных дисциплин невозможно создать робототехническую систему, отвечающую современным требованиям. Оптимальным подходом к построению математической модели динамики ИМ экзоскелета является использование модифицированной систем координат (СК) Денавита—Хартенберга и принципа Д'Аламбера, которые позволяют определить его движение с учетом приложенных внешних сил и моментов, а также сил и моментов от наложенных внешних кинематических связей и вычислить возникающие при этом силы и моменты реакций этих связей.

Параметры Денавита—Хартенберга. Кинематическая схема экзоскелета и его 3D-модель [3, 5, 6] представлены на рис. 1.

Рис. 1. Кинематическая схема (*a*) и 3D-модель общего вида (*б*) ИМ экзоскелета

Значения модифицированных параметров Денавита—Хартенберга для основных СК ИМ экзоскелета представлены в табл. 1.

Значения параметров Денавита—Хартенберга для основных ОС ИМ экзоскелета

№ CK	θ, рад	<i>d</i> , м	а, м	а, рад	f(i)	ns (i)
1	0	0	0	0	0	1
2	0	0	0	0	1	1
3	0	0	0	0	2	1
4	0	0	0	0	3	1
5	0	0	0	0	4	1
6	$-\pi/2$	0	0,238	$-\pi/2$	5	1
7	0	0,198	0,167	π/2	6	1
8	π/2	-0,107	0	$-\pi/2$	7	1
9	π/2	0	0,476	0	8	1
10	0	0	0,674	π/2	9	1
11	π	0,198	-0,094	π/2	6	2
12	π/2	-0,107	0	$-\pi/2$	11	1
13	π/2	0	0,476	0	12	1
14	0	0	0,674	π/2	13	1

Значения параметров Денавита—Хартенберга для вспомогательных СК ИМ экзоскелета:

№ CK	θ, рад	<i>d</i> , м	а, м	α, рад	f(i)	ns (i)
6,2	π	0	0,476	0	6	2

Таблица 1

Исходные данные для расчета динамики ИМ экзоскелета [7]:

• d_i [м], a_i [м], α_i [рад] — параметры Денавита—Хартенберга для основных и вспомогательных СК экзоскелета, а также параметры f(i) и ns(i), где f(i) — номер звена-отца звена i и ns(i) — параметр, показывающий, каким по счету сыном является звено i для звена f(i);

• параметры звеньев ИМ: масса, тензоры инерции, координаты центров масс звеньев, получаемые по результатам 3D-моделирования конструкции;

• координаты точек приложения внешних сил;

• координаты точек наложения внешних связей.

Уравнение динамики древовидного ИМ активного экзоскелета. Выразим усилия, развиваемые приводами, через обобщенные координаты и их производные [8]. Путем группирования сомножителей при $\dot{\mathbf{q}}$ и $\ddot{\mathbf{q}}$ получены уравнение динамики ИМ роботов, имеющих древовидные кинематические схемы (КС), определяемые матрицей достижимости звеньев D, блочным вектором ${}^{0}\mathbf{z}$ и диагональной матрицей $\mathbf{\sigma}$:

$$A(\mathbf{q})\cdot\ddot{\mathbf{q}} + B(\mathbf{q},\dot{\mathbf{q}}) - C(\mathbf{q})\cdot{}^{0}\mathbf{f}_{B} - H(\mathbf{q})\cdot{}^{0}\mathbf{n}_{B} = \mathbf{\tau},$$
(1)

где
$$A(\mathbf{q}) = \mathbf{\sigma} \cdot \begin{pmatrix} \mathbf{0} \mathbf{z}^{\mathbf{d}} \end{pmatrix}^{T} \cdot \left(-\left(\Lambda \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \right)^{T} \cdot \mathbf{m}^{\mathbf{d}} \cdot \left(D \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot (E - \mathbf{\sigma}) + \Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot \mathbf{\sigma} \right) +$$

+ $D^{T} \cdot \mathbf{0} \mathbf{J}_{C}^{\mathbf{d}} \cdot D \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot \mathbf{\sigma} \right) + (E - \mathbf{\sigma}) \cdot \left(\mathbf{0} \mathbf{z}^{\mathbf{d}} \right)^{T} \cdot D^{T} \cdot \mathbf{m}^{\mathbf{d}} \cdot \left(D \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot (E - \mathbf{\sigma}) + \Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot \mathbf{\sigma} \right);$
 $B(\mathbf{q}, \dot{\mathbf{q}}) = \mathbf{\sigma} \cdot \left(\mathbf{0} \mathbf{z}^{\mathbf{d}} \right)^{T} \cdot \left\{ -\left(\Lambda \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \right)^{T} \cdot \mathbf{m}^{\mathbf{d}} \cdot \left[\Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \cdot \Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot \mathbf{\sigma} \cdot \dot{\mathbf{q}}^{\mathbf{d}} \right) \cdot (D - E) +$
 $+ \Lambda^{T} \left(\Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \cdot \mathbf{\sigma} \cdot \dot{\mathbf{q}}^{\mathbf{d}} \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot D + \Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \cdot \left((D - E) \cdot \mathbf{\sigma} \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot \dot{\mathbf{q}} \right)^{\mathbf{d}} \right) +$
 $+ 2 \cdot D \cdot \Lambda^{T} \left(\mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot (E - \mathbf{\sigma}) \cdot \dot{\mathbf{q}}^{\mathbf{d}} \right) \cdot (D - E) + D^{T} \cdot \Lambda \left(D \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot \mathbf{\sigma} \cdot \dot{\mathbf{q}} \right)^{\mathbf{d}} \cdot \mathbf{0} \mathbf{J}_{C}^{\mathbf{d}} \cdot \mathbf{\sigma} \cdot \dot{\mathbf{q}} +$
 $+ (E - \mathbf{\sigma}) \cdot \left(\mathbf{0} \mathbf{z}^{\mathbf{d}} \right)^{T} \cdot D^{T} \cdot \mathbf{m}^{\mathbf{d}} \cdot \left[\Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \cdot \Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot \mathbf{\sigma} \cdot \dot{\mathbf{q}}^{\mathbf{d}} \right) \cdot (D - E) +$
 $+ 2 \cdot D \cdot \Lambda^{T} \left(\mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot (E - \mathbf{\sigma}) \cdot \dot{\mathbf{q}}^{\mathbf{d}} \right) \cdot (D - E) +$
 $+ \Lambda^{T} \left(\Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \cdot \mathbf{\sigma} \cdot \dot{\mathbf{q}}^{\mathbf{d}} \cdot \mathbf{0} + \Lambda^{T} \begin{pmatrix} \mathbf{0} \mathbf{c}_{fD} \end{pmatrix} \cdot \left((D - E) \cdot \mathbf{\sigma} \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot \dot{\mathbf{q}} \right)^{\mathbf{d}} \right) \right] \cdot \mathbf{0} \mathbf{z}^{\mathbf{d}} \cdot \mathbf{\sigma} \cdot \dot{\mathbf{q}};$
 $C(\mathbf{q}) = \mathbf{\sigma} \cdot \begin{pmatrix} \mathbf{0} \mathbf{z}^{\mathbf{d}} \right)^{T} \cdot \left(\left(D^{T} - E \right) \cdot \Lambda \begin{pmatrix} \mathbf{0} \mathbf{s}^{\mathbf{d}} \end{pmatrix} \cdot D^{T} + D^{T} \cdot \Lambda \begin{pmatrix} \mathbf{0} \mathbf{t}^{\mathbf{d}} \right) + (E - \mathbf{\sigma}) \cdot \begin{pmatrix} \mathbf{0} \mathbf{z}^{\mathbf{d}} \right)^{T} \cdot D^{T};$
 $H(\mathbf{q}) = \mathbf{\sigma} \cdot \begin{pmatrix} \mathbf{0} \mathbf{z}^{\mathbf{d}} \right)^{T} \cdot D^{T}.$
B этих выражениях:
 $\mathbf{m} = (\mathbf{m}_{1}, \mathbf{m}_{2} \dots \mathbf{m}_{N})^{T} -$ матрица масс звеньев ИМ;

 $J_C = (J_{C_1}, J_{C_2} \dots J_{C_N})^T$ — блочная матрица тензоров инерции звеньев;

 ${}^{0}\mathbf{t}^{\mathbf{d}} = \operatorname{diag}({}^{0}\overline{t}_{1}^{T} {}^{0}\overline{t}_{2}^{T} \dots {}^{0}\overline{t}_{N}^{T})$ — блочная диагональная матрица векторов, соединяющих начала СК звеньев f(i), ns(i) с точками, через которые проходят равнодействующие внешних сил, приложенных к звеньям i; ${}^{0}\mathbf{c}_{fD}$ — матрица, объединяющая векторы, соединяющие начала СК звеньев f(i), ns(i) с центрами масс звеньев i, в соответствии со взаимной достижимостью звеньев, описываемой матрицей D; правый верхний индекс \mathbf{d} обозначает представление векторной величины в диагональном виде.

В процессе движение активного экзоскелета его стопы взаимодействует с опорной поверхностью. Тогда уравнение динамики ИМ экзоскелета с учетом воздействия внешних сил и моментов, а также наложенных внешних кинематических связей запишем в следующем виде:

$$\begin{pmatrix} A(\mathbf{q}) & -J_{VR}^{T}(\mathbf{q}) \\ J_{t}(\mathbf{q}) & 0 \end{pmatrix} \cdot \begin{pmatrix} \ddot{\mathbf{q}} \\ {}^{0}\mathbf{R}_{f} \end{pmatrix} + \begin{pmatrix} B(\mathbf{q}, \dot{\mathbf{q}}) \\ \mathbf{P}(\mathbf{q}) \end{pmatrix} - \begin{pmatrix} L(\mathbf{q}) \cdot \mathbf{F}_{B} \\ 0 \end{pmatrix} = \begin{pmatrix} \mathbf{\tau} \\ 0 \end{pmatrix},$$
(2)

где **q** — вектор обобщенных координат ИМ; **т** — вектор-столбец моментов, развиваемых приводами ИМ.

Значения остальных блочных векторов и матриц уравнения (2) определяются в соответствии с работой [8].

Расчет значений масс, координаты центров масс, тензоров инерции ИМ звеньев экзоскелета. Определим следующие параметры звеньев:

- массы;
- координаты центров масс звеньев в связанных основных СК этих звеньев;

• тензоров инерции звеньев относительно СК, оси которых параллельны осям основной связанной СК этих звеньев, а начало координат находится в центре масс звеньев;

• координаты точек приложения внешних сил к звеньям ИМ в связанных основных СК этих звеньев;

• координаты точек приложения сил реакции к звеньям механизма в связанных основных СК этих звеньев.

Массо-инерционные параметры ИМ экзоскелета получены по результатам 3D-моделирования в системе SolidWorks. На рис. 2–10 приведены модели ИМ, в табл. 2–8 — массо-инерционные параметры ИМ экзоскелета.

Рис. 2. Звено 6

Рис. 3. Звено 7

Рис. 4. Звено 11

Таблица 2

Параметр	Звено 6	Звено 7	Звено 1
Масса, кг	<i>M</i> = 82,35379515	<i>M</i> = 9,79481173	<i>M</i> = 9,79481173
Координаты центра	<i>X</i> = 0,00167451	<i>X</i> = -0,57554557	<i>X</i> = 0,57554557
масс, м	<i>Y</i> = 0,00193510	<i>Y</i> = -0,07619089	<i>Y</i> = -0,07619089
	Z = 0,23529767	Z = - 0,20894688	Z = - 0,20894688
Тензоры инерции,	<i>I_x</i> = 4,99974584	$I_x = 0,52381594$	$I_x = 0,52381594$
кг•м ²	<i>I_y</i> = 3,89204735	$I_y = 5,65924037$	$I_y = 5,65924037$
	$I_z = 1,14422619$	I _z = 5,28749585	I _z = 5,28749585
	$I_{xy} = -0,00065630$	$I_{xy} = 0,07096446$	$I_{xy} = -0,07096446$
	$I_{xz} = -0,01372725$	$I_{xz} = 1,38590490$	$I_{xz} = -1,38590490$
	$I_{yz} = 0,00602987$	$I_{yz} = 0,00461992$	$I_{yz} = 0,00461992$

Массо-инерционные параметры звеньев 6, 7 и 11

Рис. 5. Звено 8

Рис. 6. Звено 12

Таблица 3

Массо-инерционные параметры звеньев 8, 12

Параметр	Звено 8	Звено 12
Масса, кг	<i>M</i> = 4,76673760	<i>M</i> = 4,76673760
Координаты цен-	X = -0,03892818	X = -0,03892818
тра масс, м	<i>Y</i> = -0,00026844	<i>Y</i> = -0,00026844
	Z=0,08972806	Z=-0,08972806
Тензоры инерции,	$I_x = 0,11674009$	$I_x = 0,11674009$
кг•м ²	$I_y = 0,12773751$	$I_y = 0,12773751$
	$I_z = 0,01318478$	$I_z = 0,01318478$
	$I_{xy} = 0,00005254$	$I_{xy} = 0,00005254$
	$I_{xz} = 0,00419648$	$I_{xz} = -0,00419648$
	$I_{yz} = 0,00003189$	$I_{yz} = -0,00003189$

Рис. 7. Звено 9

Рис. 8. Звено 13

Таблица 4

Массо-инерционные параметры звеньев 9, 13

Параметр	Звено 9	Звено 13
Масса, кг	<i>M</i> = 8,36217328	M = 8,36217328
Координаты центра	<i>X</i> = -0,00434194	<i>X</i> = -0,00434194
масс, м	<i>Y</i> = -0,03884998	<i>Y</i> = -0,03884998
	Z = 0,00029488	Z = -0,00029488
Тензоры инерции,	$I_x = 0,71946350$	$I_x = 0,71946350$
$K\Gamma \cdot M^2$	$I_y = 0,05400681$	$I_y = 0,05400681$
	$I_z = 0,76869996$	$I_z = 0,76869996$
	$I_{xy} = -0,14927912$	$I_{xy} = -0,14927912$
	$I_{xz} = 0,00021547$	$I_{xz} = -0,00021547$
	$I_{yz} = 0,00020624$	$I_{yz} = -0,00020624$

Рис. 9. Звено 10

Рис. 10. Звено 14

Таблица 5

Параметры	Звено 10	Звено 14
Масса, кг	M=7,60822700	<i>M</i> = 7,60822700
Координаты центра	X = 0,06150354	X = -0,06150354
масс, м	Y = 0,05504941	<i>Y</i> = 0,05504941
	Z=0,12844091	Z=0,12844091
Тензоры инерции,	$I_x = 0,07701307$	<i>I_x</i> = 0,07701307
$K\Gamma \cdot M^2$	$I_y = 0,08658967$	$I_y = 0,08658967$
	$I_z = 0,01058238$	$I_z = 0,01058238$
	$I_{xy} = -0,00017268$	$I_{xy} = 0,00017268$
	$I_{xz} = 0,00349863$	$I_{xz} = -0,00349863$
	$I_{yz} = -0,00093428$	$I_{yz} = -0,00093428$

Массо-инерционные параметры звеньев 10, 14

Запишем законы и диапазоны изменения обобщенных координат для сочленений, оснащенных приводами:

бедренное сочленение

 $q_{9}(t) = q_{13}(t) = -45^{\circ} \sin(90t);$

коленное сочленение

 $q_{10}(t) = q_{14}(t) = 45^{\circ} \sin(90t)$.

Рис. 11. Исследуемое положение экзоскелета

Ниже представлены коды из пускового файла:

s.q(9)= -(pi/4)*sin((pi/2)*time); s.dq(9)= -(pi/2)*(pi/4)*cos((pi/2)*time); s.ddq(9)= (pi/2)*(pi/2)*(pi/4)*sin((pi/2)*time); s.q(10)= (pi/4)*sin((pi/2)*time); s.dq(10)= (pi/2)*(pi/4)*cos((pi/2)*time); s.ddq(10)= -(pi/2)*(pi/2)*(pi/4)*sin((pi/2)*time).

Результаты теоретических исследований. Построена зависимость мощности в сочленении от времени с учетом реакции опоры в программном комплексе MATLAB. Стремление к уменьшению потребляемой мощности обусловливает разработки силовых установок, исследование различных видов приводов и способов энергоэффективного управления ими [9, 10].

На основании предложенного метода расчета энергетических параметров экзоскелета [11, 12] методом синтеза КС ИМ экзоскелета получены графики для различных сочленений экзоскелеты (рис. 12, 13) и зависимости моментов в сочленениях от времени с учетом реакции опор (рис. 14–19).

Рис. 12. Графики для сочленения 9

Рис. 13. Графики для сочленения 10

Рис. 16. Зависимость моментов в сочленении 11 от времени с учетом реакции опоры

Рис. 17. Зависимость моментов в сочленении 12 от времени с учетом реакции опоры

Рис. 18. Зависимость моментов в сочленении 13 от времени с учетом реакции опоры

Рис. 19. Зависимость моментов в сочленении 14 от времени с учетом реакции опоры

Заключение. Рассмотренный метод расчета энергетических параметров экзоскелета позволяет прогнозировать энергетические характеристики приводов [13]. Результаты теоретических исследований показали, что потребляемая мощность для экзоскелета очень высокая. Для уменьшения мощности необходимо удлинить ноги экзоскелета и исследовать способы энергоэффективного управления приводами, поскольку частота зависит от скорости корпуса экзоскелета.

Литература

- [1] Медведев В.С., Лесков А.Г., Ющенко А.С., Попов Е.П., ред. Системы управления манипуляционных роботов. Москва, Наука, 1978, 416 с.
- [2] Ковальчук А.К. Модифицированная система координат Денавита-Хартенберга для исполнительных механизмов роботов с древовидной кинематической структурой.

Исследование динамики исполнительного механизма экзоскелета с учетом...

Наука и образование. МГТУ им. Н.Э. Баумана, 2015, № 11, с. 12–30. URL: http://technomag.bmstu.ru/doc/826673.html (дата обращения 10.06.2017).

- [3] Исабеков Ж.Н. Проектирование кинематической схемы древовидного исполнительного механизма экзоскелета в МГТУ им. Н.Э. Баумана. *Молодежный научнотехнический вестник*, 2016, № 11. URL: http://sntbul.bmstu.ru/doc/851261.html.
- [4] Зенкевич С.Л., Ющенко А.С. Основы управления манипуляционными роботами. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2004, 478 с.
- [5] Исабеков Ж.Н. Математическая модель кинематики и динамики древовидного исполнительного механизма активного экзоскелета. Политехнический молодежный журнал, 2016, №11. URL: http://ptsj.ru/catalog/menms/robots/34.html.
- [6] Верейкин А.А., Ковальчук А.К., Каргинов Л.А. Исследование динамики исполнительного механизма экзоскелета нижних конечностей с учётом реакций опорной поверхности. *Наука и образование. МГТУ им. Н.Э. Баумана*, 2014, № 12, с. 256–278. URL: http://technomag.bmstu.ru/doc/745388.html (дата обращения 10.06.2017).
- [7] Ковальчук А.К., ред. Основы теории исполнительных механизмов шагающих роботов. Москва, Рудомино, 2010, 167 с.
- [8] Ковальчук А.К., Яроц В.В. Проектирование исполнительного механизма и расчет мощности приводов робота специального назначения. Естественные и технические науки, 2016, № 10, с. 101–106.
- [9] Ковальчук А.К. Расчет мощности приводов робота с учетом динамики его исполнительного механизма. Естественные и технические науки, 2014, № 1, с. 128–131.
- [10] Ковальчук А.К., Верейкин А.А., Каргинов Л.А., Цепкова А.А. Проектирование и расчет мощности приводов медицинского робота с учетом динамики его исполнительного механизма. *Техника и технология: новые перспективы развития*, 2014, № XII, с. 28–41.
- [11] Ковальчук А.К., Ромашко А.М., Верейкин А.А., Каргинов Л.А., Малякина Е.А., Статива В.А. Определение моментов в сочленениях шестиногого шагающего робота. *Теоретические и прикладные аспекты современной науки*, 2014, № 3-1, с. 78–85.
- [12] Верейкин А.А., Ковальчук А.К., Кулаков Д.Б., Семенов С.Е. Анализ и выбор кинематической структуры исполнительного механизма экзоскелета. *Наука и образование*. *МГТУ им. Н.Э. Баумана*, 2014, № 7, с. 72–93.
 - URL: http://technomag.bmstu.ru/doc/717676.html (дата обращения 10.06.2017).
- [13] Кугультинов С.Д., Ковальчук А.К., Портнов И.И. *Технология обработки конструкционных материалов*. Москва, Изд-во МГТУ им. Н. Э. Баумана, 2008, 678 с.

Исабеков Жанибек Назарбекович — магистрант кафедры «Гидромеханика гидромашины и гидропневмоавтоматика», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — А.К. Ковальчук, канд. техн. наук, доцент кафедры «Гидромеханика гидромашины и гидропневмоавтоматика», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

INVESTIGATION OF ACTUATOR DYNAMICS FOR AN EXOSKELETON, TAKING SUPPORT CONTACT FORCES INTO ACCOUNT

Zh.N. Isabekov

janibek_23.93@mail.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
We consider a kinematic diagram of a tree-like actuator	Exoskeleton, synthesis of kinematic
for an exoskeleton. We used the D'Alembert's principle	structures, equation of exoskeleton
to derive the equations of dynamics. We present the	dynamics, mathematical modelling
results of investigating dynamics of an exoskeleton	
actuator. We developed a 3D model of the exoskeleton	
actuator using the SolidWorks software package. We	
used the MATLAB software package to plot torque and	© Bauman Moscow State Technical
power inside the joints as functions of time.	University, 2017

References

- Medvedev V.S., Leskov A.G., Yushchenko A.S., Popov E.P., ed. Sistemy upravleniya manipulyatsionnykh robotov [Control systems of manipulation robots]. Moscow, Nauka publ., 1978, 416 p.
- [2] Koval'chuk A.K. Modified Denavit-Hartenberg coordinate system for robot actuating mechanisms with tree-like kinematic structure. *Nauka i obrazovanie. MGTU im. N.E. Baumana* [Science and Education. BMSTU], 2015, no. 11, pp. 12–30. Available at: http://technomag.bmstu.ru/doc/826673.html (accessed 10.06.2017).
- [3] Isabekov Zh.N. Kinematic diagram engineering of tree-like exoskeleton actuating mechanism in Bauman MSTU. *Molodezhnyy nauchno-tekhnicheskiy vestnik*, 2016, no. 11. Available at: http://sntbul.bmstu.ru/doc/851261.html.
- [4] Zenkevich S.L., Yushchenko A.S. Osnovy upravleniya manipulyatsionnymi robotami [Basic concepts of manipulation robots control]. Moscow, Bauman Press, 2004, 480 p.
- [5] Isabekov Zh.N. Mathematical model of kinematics and dynamics of powered exoskeleton tree actuator. *Politekhnicheskiy molodezhnyy zhurnal* [Politechnical student journal], 2016, no. 11. Available at: http://ptsj.ru/catalog/menms/robots/34.html.
- [6] Vereykin A.A., Koval'chuk A.K., Karginov L.A. The lower extremities exoskeleton actuator dynamics research taking into account support reaction. *Nauka i obrazovanie. MGTU im. N.E. Baumana* [Science and Education. BMSTU], 2014, no. 12, pp. 256–278. Available at: http://technomag.bmstu.ru/doc/745388.html (accessed 10.06.2017).
- [7] Koval'chuk A.K., ed. Osnovy teorii ispolnitel'nykh mekhanizmov shagayushchikh robotov [Theory fundamentals of walking robot actuating mechanism]. Moscow, Rudomino publ., 2010, 167 p.
- [8] Koval'chuk A.K., Yarots V.V. Designing actuating mechanism of robot and power calculation of task rectangular drive. *Estestvennye i tekhnicheskie nauki* [Natural and technical sciences], 2016, no. 10, pp. 101–106.
- [9] Koval'chuk A.K. Power calculation of robot drive taking into account its actuating mechanism dynamics. *Estestvennye i tekhnicheskie nauki* [Natural and technical sciences], 2014, no. 1, pp. 128–131.

- [10] Koval'chuk A.K., Vereykin A.A., Karginov L.A., Tsepkova A.A. Designing and calculation of medical robot drives taking into account its actuating mechanism dynamics. *Tekhnika i tekhnologiya: novye perspektivy razvitiya*, 2014, no. XII, pp. 28–41.
- [11] Koval'chuk A.K., Romashko A.M., Vereykin A.A., Karginov L.A., Malyakina E.A., Stativa V.A. Moments identification in six-leg walking robot articulation. *Teoreticheskie i* prikladnye aspekty sovremennoy nauki, 2014, no. 3-1, p. 78–85.
- [12] Vereykin A.A., Koval'chuk A.K., Kulakov D.B., Semenov S.E. Analysis and Choice of the Exoskeleton's Actuator Kinematic Structure. *Nauka i obrazovanie. MGTU im. N.E. Baumana* [Science and Education. BMSTU], 2014, no. 7, pp. 72–93. Available at: http://technomag.bmstu.ru/doc/717676.html (accessed 10.06.2017).
- [13] Kugul'tinov S.D., Koval'chuk A.K., Portnov I.I. Tekhnologiya obrabotki konstruktsionnykh materialov [Optimization of construction materials technology]. Moscow, Bauman Press, 2008, 678 p.

Isabekov Zh.N. — Master's degree student, Department of Fluid Mechanics, Hydraulic Machines and Hydraulic and Pneumatic Automation, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — A.K. Kovalchuk, Cand. Sc. (Eng.), Assoc. Professor, Department of Fluid Mechanics, Hydraulic Machines and Hydraulic and Pneumatic Automation, Bauman Moscow State Technical University, Moscow, Russian Federation.