TRAJECTORY CONTROL OF THE UNMANNED VEHICLE BY DANAMIC WINDOW METHOD

K.A. Smirnov

smk.robotics@gmail.com

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
This paper describes a method for trajectory control of the unmanned vehicle motion by using a dynamic window. A special feature of this method is the determination of the realized trajectories group out of many possible trajectories by imposing certain restrictions, and the subsequent selection of the optimal	Unmanned vehicle, automatic control system, model, modeling, trajectory motion
trajectory. We carried out a test using the model of the car	© Bauman Moscow State Technical
in environment "Stage" and analysed the results	University, 2016

References

[1] Burdakov S.F., Miroshnik I.V., Stel'makov R.E. Sistemy upravleniya dvizheniem kolesnykh robotov [Wheeled robot motion control systems]. Sankt-Petersburg, Nauka Publ., 2001. 227 p. (in Russ.).

[2] Fox D., Burgard W., Thrun S. The dynamic window approach to collision avoidance. Robotics & Automation Magazine, 1997, vol. 4, no. 1, pp. 23–33. DOI: 10.1109/100.580977

[3] Hedges R. About Stage. The Player Project official website.

URL: http://playerstage.sourceforge.net/index.php?src=stage (accessed 02.10.2016).

[4] Kritayakirana K. Autonomous vehicle control at the limits of handling. International Journal of Vehicle Autonomous Systems, 2012, vol. 10, no. 4, pp. 271–296.

DOI: 10.1504/IJVAS.2012.051270

[5] Kapania N., Gerdes C. Design of a feedback-feedforward steering controller for accurate path tracking and stability at the limits of handling. Vehicle System Dynamics, 2015, vol. 53, no. 12, pp. 1687–1704. DOI: 10.1080/00423114.2015.1055279

Smirnov K.A. — post-graduate student of the Department of Theory of mechanisms and machines, engineer of Research and Training Center "Robotics", Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — A.A. Minin, Cand. Sci. (Eng.), Assoc. Professor of the Department of Special robotics and mechatronics, head of the department of Automated vehicles, Research and Training Center "Robotics", Bauman Moscow State Technical University, Moscow, Russian Federation.