INVESTIGATING RIDE QUALITY OF A WHEELED VEHICLE DURING LINEAR MOTION OVER TRACK IRREGULARITIES

Zh.V. Alborova

alborova.jane@yandex.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
Solving the problem of vibration loading at the driver's workstation involves describing mathematical models of wheeled vehicle motion that could aid in analysing the effect the structural parameters of machines have on their traction performance and general performance characteristics during linear and curvilinear motion on a hard road surface and on deformable ground. We employed the Matlab Simulink software environment to develop a mathematical model of linear motion for a wheeled vehicle, using a tri-axle car with a rocker arm axle suspension as an example. Simulation techniques validate our mathematical model. We present results of	Vibration loading, linear motion, track irregularities, ride quality, mathematical model, simulation technique, suspension, axle suspen- sion, rocker arm links, multi-axle wheeled vehicle
modelling car motion at various speeds on roads with	© Bauman Moscow State Technical
quality indexes from 1 to 5.	University, 2017

References

- Zhileykin M.M., Sokolov A.V. Effect of axes balance connections on multiwheeler ease of movement. *Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie* [Proceedings of Higher Educational Institutions. Machine Building], 1987, no. 8, pp. 157.
- [2] Zhileykin M.M. Modelirovanie sistem transportnykh sredstv [Simulation of transport systems]. Moscow, Bauman Press, 2017, 97 p.
- [3] Zhileykin M.M. Razrabotka metodiki issledovaniya nagruzhennosti i prognozirovaniya pokazateley nadezhnosti agregatov avtomobiley po rezul'tatam stendovykh i dorozhnykh ispytaniy. Avtoreferat dis. kand. tekh. nauk [Method development for loading research and predicting reliability index of major vehicle component parts based on the research findings of bench and road tests. Abs. kand. tech. sci. diss.]. Moscow, 1991, 16 p.
- [4] Polungyan A.A., Fominykh A.B. Mathematical simulation of dynamics of wheeled vehicle transmission. *Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie* [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering], 2003, no. 4, pp. 15–25.

Alborova Zh.V. — student, Department of Wheeled Vehicles, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — M.M. Zhileykin, Dr. Sc. (Eng.), Professor, Department of Wheeled Vehicles, Bauman Moscow State Technical University, Moscow, Russian Federation.