ИССЛЕДОВАНИЕ РАСПРЕДЕЛЕНИЯ НАГРУЗКИ ПО ЭЛЕМЕНТАМ ПЛАНЕТАРНО-ЦЕВОЧНОЙ ПЕРЕДАЧИ

Д.А. Заварзин О.Ю. Зайцева

zavarzin.den@bk.ru zaitseva.ou@gmail.com

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Представлена методика расчета усилий при плане- тарно-цевочной передаче с учетом дополнительных степеней свободы сателлита и ограничений, накла- дываемых опорами сателлита и пальцами механиз- ма параллельных кривошипов, позволяющая уточ- нить положение самой нагруженной цевки в зацепле- нии. Проведено сравнение результатов этого расче- та с расчетами по известным методикам, в том числе использующим метод конечных элементов. Сделан вывод о смещении самой нагруженной цевки от полюса зацепления к оси симметрии передачи. Результаты расчета можно применять при проек- тировании планетарно-цевочных редукторов с	Планетарно-цевочный редуктор, циклоидальное зацепление, тро- хоидальное зацепление
эпициклоидальным и гипоциклоидальным зацеплени-	Поступила в редакцию 27.05.2017
ем, выполненных по схеме к-п-v.	© MI I У ИМ. Н.Э. Баумана, 2017

К современным редукторам предъявляются высокие требования к крутящему моменту, точности вращения и крутильной жесткости при небольших габаритах [1]. Этим требованиям удовлетворяют редукторы или агрегаты с планетарно-цевочной передачей, которые наиболее распространены в робототехнике и станкостроении. Расчетам характеристик таких редукторов посвящены труды отечественных [2–5] и зарубежных ученых [6–10] и др. Из работ, описывающих силовой расчет передач, в первую очередь, отметим [2, 3, 8].

Основной проблемой при расчете сил в планетарно-цевочном зацеплении является его многопарность, и, как следствие, статическая неопределимость системы. Для раскрытия статической неопределимости исследователи применяют различные допущения. Одно из таких допущений введено в работе [2] — это гипотеза о равномерном распределении окружных усилий. Использование этой гипотезы приводит к синусоидальному закону распределения нагрузки по цевкам. Следующее допущение представлено в работе [3], где введена гипотеза о том, что под действием крутящего момента и возникающих сил сателлит, не деформируясь, поворачивается вокруг своего центра. Несмотря на разницу начальных допущений, закон распределения нагрузки по цевкам также получается синусоидальным. Большинство авторов, в том числе зарубежных, учитывают это распределение, поэтому все расчеты на прочность основываются именно на нем. В дальнейшем расчеты нагрузочной способности планетарно-цевочных редукторов получили развитие благодаря использованию метода конечных элементов (МКЭ) для определения напряжений в контактах и за счет учета других факторов, влияющих на распределение нагрузок между цевками, таких как зазоры в передаче [9], трение в зоне контакта [10]. Так или иначе, все расчеты базируются на синусоидальном распределении нагрузок, на основе гипотезы о повороте сателлита и отсутствии его деформаций.

Таким образом, общепринятая расчетная модель предполагает наличие у абсолютно жесткого сателлита одной степени свободы — вращения вокруг эксцентрика. Расчетная схема, соответствующая такой модели, представлена на рис. 1, *а.* Из рисунка видно, что расчету подлежат только силы в цевках, а нагрузки, действующие на подшипник и пальцы механизма параллельных кривошипов, подлежат отдельному определению.

Рис. 1. Модели планетарно-цевочного механизма с одной (*a*) и с четырьмя степенями свободы (*б*):

Т — крутящий момент

В планетарно-цевочных редукторах цевки, как правило, представляют собой ролики, аналогичные используемым в роликовых подшипниках. Поскольку податливость сопряжения сателлит-цевки сравнима с податливостью сопряжения сателлит-подшипника, более корректной можно считать модель, представленную на рис. 1, *б*. В данном случае предполагается, что сателлит и обойма абсолютно жесткие, но места контакта между сателлитом, цевками, роликами подшипника и пальцами механизма параллельных кривошипов податливые. При этом у механизма три степени свободы: перемещение и поворот сателлита в плоскости механизма, а также поворот обоймы вокруг ее центра.

Для сравнения предложенных моделей проведен расчет планетарноцевочной передачи со следующими параметрами: $z_e = 22$; $z_f = 8$; $z_b = 15$; $d_2 = 123$ мм; e = 2 мм; $d_p = 10$ мм; b = 8 мм; $a_f = 77$ мм; $D_f = 18$ мм; $D_b = 47$ мм. Результаты расчета сил в цевках для двух различных моделей представлены на рис. 2.

Рис. 2. Распределение сил в цевках, согласно моделям передач с одной (*a*) и четырьмя степенями свободы (*б*)

Согласно расчетной схеме, предполагающей, что все элементы передачи жесткие, кроме мест контакта сателлита с цевками, а передача имеет одну степень свободы, на рис. 2, *а* представлено распределение сил в цевках. Из рисунка видно, что момент передается половиной цевок. Однако в действительности вследствие неточностей изготовления, число работающих цевок уменьшается, что несколько меняет характер эпюры. Наиболее нагруженная цевка, согласно такой модели, находится напротив полюса зацепления (в данном случае четвертая сверху).

Распределение сил в цевках, согласно расчетной схеме, предполагающей, что детали передачи жесткие, но места контакта сателлита с цевками, роликами подшипника и пальцами механизма параллельных кривошипов податливые, а передача имеет четыре степени свободы, представлено на рис. 2, *б*. Вследствие того, что подшипник в такой модели податливый, сателлит смещается в сторону цевок, которые не передают нагрузку в общепринятой модели. Поскольку эти «лишние» цевки находятся слева от вертикальной оси, сила, с которой они давят на сателлит, создают момент, затрудняющий работу передачи. Это несколько увеличивает и выравнивает нагрузку, действующую на цевки, находящиеся справа от вертикальной оси. Наиболее нагруженная цевка в такой модели смещена по часовой стрелке вниз или вверх (в данном случае это девятая цевка сверху).

В заключение отметим, податливость мест контакта сателлита с роликами подшипника и пальцами механизма параллельных кривошипов существенно влияет на распределение нагрузки в планетарно-цевочной передаче. В модели, учитывающей эти податливости, суммарная нагрузка на цевки увеличивается. Это связано с тем, что в работу вступают новые цевки, силы в которых направлены таким образом, чтобы противодействовать вращению сателлита. На распределение нагрузки между цевками влияет как геометрия профиля сателлита, так и геометрия его внутренних вырезов и прочих элементов передачи.

Литература

- [1] Ряховский О.А., ред. *Детали машин*. Москва, Издательство МГТУ им. Н.Э. Баумана, 2014. 465 с.
- [2] Шанников В.М. Планетарные редукторы с внецентроидным зацеплением. Ленинград, Машгиз, 1948. 173 с.
- [3] Кудрявцев В.Н. Планетарные передачи. Ленинград, Машиностроение, 1966. 308 с.
- [4] Сигов И.В. Исследование планетарно-цевочного редуктора. Передачи в машиностроении. Москва, Машгиз, 1951. С. 44–58.
- [5] Киреев С.О., Ковалёв В.Н. Структура, кинематика и геометрия планетарных передач с внецентроидным цевочным зацеплением. Новочеркасск, НГТУ, 1995. 98 с.
- [6] Егоров И.М., Алексанин С.А., Федосовский М.Е., Кряжева Н.П. Математическое моделирование погрешностей изготовления элементов цевочной передачи планетарного редуктора. Научно-технический вестник информационных технологий, механики и оптики, 2014, № 6(94), с. 171–176.
- [7] Егоров И.М., Алексанин С.А., Федосовский М.Е., Птицына А.С. Влияние погрешностей элементов механизма параллельных кривошипов на кинематическую точность планетарного цевочного редуктора. Приборостроение, 2014, № 10, с. 76–80.
- [8] Lehmann M. Berechnung und messung der kräfte in einem zykloiden-kurvenscheiben-getriebe. München, 1976. 224 p.
- [9] Blagojevic M., Marjanovic N., Djordjevic Z., Stojanovic B., Marjanovic V., Vujanac R., Disic A. Numerical and experimental analysis of the cycloid disc stress state. *Tehnički vjesnik*, 2014, vol. 21, no. 2, pp. 377–382.
- [10] Blanche J.G., Yang D.C.H. Cycloid drives with machining tolerances. *Journal of mecha*nisms, transmissions, and automation in design, 1989, vol. 111, no. 3, pp. 337–344.

Заварзин Денис Алексеевич — магистрант кафедры «Основы конструирования машин», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Зайцева Ольга Юрьевна — учебный мастер кафедры «Основы конструирования машин», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — М.М. Ермолаев, канд. техн. наук, доцент кафедры «Основы конструирования машин», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

RESEARCH OF LOAD DISTRIBUTION OVER ELEMENTS OF EPICYCLIC PIN GEAR

D.A. Zavarzin

O.Yu. Zaytseva

zavarzin.den@bk.ru zaitseva.ou@gmail.com

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The study focuses on the method for calculating the forces in epicyclic pin gear with allowances made for the addi- tional degrees of freedom of the satellite and the con- straints imposed by the supports of the satellite and the fingers of the parallel crank mechanism. The method allows us to clarify the position of the loaded pin in the gearing. The results of this calculation are compared with calculations made according to the known methods, including those using the finite element method. We made the conclusion about the displacement of the most loaded pin from the gearing pole to the gear symmetry axis. The results of the calculation can be used in design-	Cycloid speed reducer, cycloidal gearing, trochoidal gearing
ing a cycloid speed reducer with epicycoidal and chypocy-	© Bauman Moscow State Technical
cloidal gearing, made according to the scheme k-h-v.	University, 2017

References

- [1] Ryakhovskiy O.A., ed. Detali mashin [Machinery parts]. Moscow, Bauman Press, 2014. 465 p.
- [2] Shannikov V.M. Planetarnye reduktory s vnetsentroidnym zatsepleniem [Planetary gears with off-centroid fixation]. Leningrad, Mashgiz publ., 1948. 173 p.
- [3] Kudryavtsev V.N. Planetarnye peredachi [Planetary gears]. Leningrad, Mashinostroenie publ., 1966. 308 p.
- [4] Sigov I.V. Issledovanie planetarno-tsevochnogo reduktora. Peredachi v mashinostroenii [Research on cycloidal gear reducer. In: gears in mechanic engineering]. Moscow, Mashgiz publ., 1951. Pp. 44–58.
- [5] Kireev S.O., Kovalev V.N. Struktura, kinematika i geometriya planetarnykh peredach s vnetsentroidnym tsevochnym zatsepleniem [Structure, kinematics and geometry of planetary gears with off-centroid lantern-wheel gearing]. Novocherkassk, NSTU publ., 1995. 98 p.
- [6] Egorov I.M., Aleksanin S.A., Fedosovskiy M.E., Kryazheva N.P. Modeling of manufacturing errors for pin-gear elements of planetary gearbox. *Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki* [Scientific and Technical Journal of Information Technologies, Mechanics and Optics], 2014, no. 6(94), pp. 171–176.
- [7] Egorov I.M., Aleksanin S.A., Fedosovskiy M.E., Ptitsyna A.S. The effect of manufacturing errors in the parallel crank mechanism elements on kinematic accuracy of a cycloidal reducer. *Priborostroenie* [Journal of Instrument Engineering], 2014, no. 10, pp. 76–80.
- [8] Lehmann M. Berechnung und messung der kräfte in einem zykloiden-kurvenscheibengetriebe. München, 1976. 224 p.
- [9] Blagojevic M., Marjanovic N., Djordjevic Z., Stojanovic B., Marjanovic V., Vujanac R., Disic A. Numerical and experimental analysis of the cycloid disc stress state. *Tehnički vjesnik*, 2014, vol. 21, no. 2, pp. 377–382.

[10] Blanche J.G., Yang D.C.H. Cycloid drives with machining tolerances. *Journal of mechanisms, transmissions, and automation in design,* 1989, vol. 111, no. 3, pp. 337–344.

Zavarzin D.A. — Master's Degree student, Department of Machine Construction Principles, Bauman Moscow State Technical University, Moscow, Russian Federation.

Zaytseva O.Yu. — tutor, Department of Machine Construction Principles, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — M.M. Ermolaev, Cand. Sc. (Eng.), Assoc. Professor, Department of Machine Construction Principles, Bauman Moscow State Technical University, Moscow, Russian Federation.