MODEL OF STRAIN-STRESS STATE OF CURVILINEAR LAMINATED BEAM UNDER BENDING

A.N. Ruslantsev^{1,2} Yu.Yu. Festa¹

Festa-y-yura@gmail.com

¹Bauman Moscow State Technical University, Moscow, Russian Federation ²Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russian Federation

Abstract	Keywords
The study proposes an analytical model for determin- ing the strain-stress state of the wing mechanization element, which is a curvilinear composite beam. The model takes into account the variation of the circum- ferential modulus of elasticity along the thickness of the beam. To verify the correctness of the presented model by the finite element method, we performed numerical simulation of the strain-stress state of the bar and confirmed the correctness of the proposed ana-	Composite, carbon fiber, curvilinear laminated beam bending, strain- stress state
lytical model. Finally we give recommendations for	© Bauman Moscow State Technical
increasing the bearing capacity of the structure.	University, 2017

References

- [1] Lekhnitskiy S.G. Teoriya uprugosti anizotropnykh tel [Elasticity theory of anisotropic bodies]. Moscow, Nauka publ., 1977. 416 p.
- [2] Lekhnitskiy S.G. Anizotropnye plastinki [Anisotropic wafers]. Moscow–Leningrad, OGIZ Gostekhizdat publ., 1947. 355 p.
- [3] Charrier J.S., Laurin F., Carrere N., Mahdi S. Determination of the out-of-plane tensile strength using four-point bending tests on laminated L-angle specimens with different stacking sequences and total thicknesses. *Composites Part A: Applied Science and Manufacturing*, 2016, vol. 81, pp. 243–253.
- [4] Cui W., Liu T., Len J., Ruo R. Interlaminar tensile strength (ILTS) measurement of woven glass/polyester laminates using four-point curved beam specimen. *Composites Part A: Applied Science and Manufacturing*, 1996, vol. 27, no. 11, pp. 1097–1105.
- [5] Olsson R. A survey of test methods for multiaxial and out-of plane strength of composite laminates. *Composites Science and Technology*, 2011, vol. 71, no. 6, pp. 773–783.

Ruslantsev A.N. — assistant, post-graduate student, Department of Rocket and Space Composite Structures, Bauman Moscow State Technical University, Moscow, Russian Federation; Junior Research Scientist, Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russian Federation.

Festa Yu.Yu. — student, Department of Rocket and Space Composite Structures, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisors — A.M. Dumanskiy, Dr. (Phys.-Math.), Professor, Department of Rocket and Space Composite Structures, Bauman Moscow State Technical University, Moscow, Russian Federation; M.A. Alimov, Senior Research Scientist, Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN), Moscow, Russian Federation.