ОДИН ИЗ ПОДХОДОВ К ОПРЕДЕЛЕНИЮ ПЕРИОДА ПРИРАБОТКИ ЗУБЧАТЫХ ПЕРЕДАЧ

Е.И. Коротких

katenka152@yandex.ru

МГТУ им. Н.Э. Баумана, Москва, Российская Федерация

Аннотация	Ключевые слова
Предложено определять период приработки как время развития начальных производственно- технологических дефектов, предположительно имеющихся в металле зуба колеса, до критических	Зубчатая передача, период при- работки, пограничный размер трещин, диагностика редукто- ров, поломка зубъев колеса
размеров. Для конкретных условий произведен рас-	
чет предельно допустимого размера трещины в	
основания зуба колеса и время до разрушения зуба с	Поступила в редакцию 31.05.2017
дефектом, превышающим этот размер.	© МГТУ им. Н.Э. Баумана, 2017

Как известно, жизненный цикл любой машиностроительной конструкции можно разделить на три периода: приработки, основной, интенсивных отказов [1]. За время периода приработки, как правило, проявляются производственные технологические дефекты изделия, незамеченные при выходном контроле. Оценка продолжительности периода приработки важна тем, что будет известно, в течение какого времени желателен мониторинг технического состояния конструкции, т. е. практически ежедневный контроль. Быстрое выявление дефекта позволит своевременно остановить технологический процесс, произвести ремонт и тем самым избежать более тяжелых последствий отказа. Например, если вовремя заметить развитие трещины в зубе зубчатой передачи редуктора, то можно предотвратить попадание обломков зуба в другие элементы редуктора. По истечении срока приработки периодичность осмотра и диагностики технического состояния может быть значительно увеличена, что существенно сократит производственные издержки. Таким образом, определение срока приработки является важной практической задачей.

В качестве примера в статье представлен расчет периода приработки для коническо-цилиндрического редуктора в предположении, что в основании зуба колеса тихоходной ступени имеется трещина пограничных размеров, которая подвержена постепенному росту в процессе эксплуатации и приводит к разрушению зуба колеса.

Материал цилиндрического зубчатого колеса — качественная углеродистая малолегированная сталь марки 40Х. Эта сталь с твердостью H < 350 HB, термообработка — улучшение или нормализация.

Характеристики тихоходной ступени редуктора: число зубьев шестерни $z_1 = 20$; число зубьев колеса $z_2 = 80$; делительный диаметр колеса $d_2 = 280$ мм; межосевое расстояние $a_w = 165$ мм. Ширина зуба колеса b = 49 мм; толщина зуба колеса в основании $s_1 = 8$ мм.

Для получения объективной оценки прочности конструкции с трещиной при статической нагрузке Д. Ирвин предложил использовать в качестве критерия разрушения коэффициент интенсивности напряжений (КИН). Условие разрушения конструкции в этом случае имеет следующий вид:

$$K_I > K_{IC}$$
,

где *K*_{*IC*} — критический коэффициент интенсивности напряжений или вязкость разрушения [2, 3].

При невыполнении этого условия трещина не растет. Вязкость разрушения является механической характеристикой материала и определяется путем эксперимента. КИН — расчетная величина, зависящая от длины трещины и действующего растягивающего напряжения. Размерность КИН — МПа·м^{1/2}.

Так как колесо работает в условиях переменных нагрузок, то для нахождения допустимых размеров трещины в зубе колеса, при которых эта усталостная трещина не развивается и изделие может функционировать сколь угодно много, справедливо неравенство:

$$K_{\rm I} < K_{th}$$
,

где *K*_{th} — пороговое значение КИН.

Условие умеренной скорости развития трещины:

$$K_{th} < K_{\rm I} < K_{fc},$$

где K_{fc} — циклическая вязкость разрушения, определяемая экспериментально.

Это означает, что как только КИН превысит K_{fc} , произойдет лавинообразное разрушение конструкции.

Для марки стали 40Х примем $K_{fc} = 150$ МПа · м^{1/2}.

Одним из самых распространенных видов трещин в основании зуба колеса является продольная трещина.

Предположим, что дефект в основании зуба колеса в виде продольной трещины, которую практически невозможно заметить при визуальном осмотре (рис. 1). Следует отметить, что чем больше размер зубчатого колеса в редукторе, тем больше вероятность существования микродефектов в нем.

Для того чтобы найти коэффициент интенсивности напряжений продольной трещины воспользуемся следующей формулой [4]:

$$K_{\rm I} = \sigma_{\rm pacr} \sqrt{\pi l} \left(1, 12 - 0, 23\lambda + 10, 6\lambda^2 - 21, 7\lambda^3 + 30, 4\lambda^4 \right).$$

Данная формула справедлива для $\lambda \le 0,7$, где $\lambda = \frac{l}{s_1}; l$ — глубина трещины,

а *s*₁ — толщина зуба в основании.

Один из подходов к определению периода приработки зубчатых передач

Рис. 1. Продольная трещина в основании зуба

Для рассматриваемых условий нагружения по традиционному подходу [5] были определены растягивающие напряжения, возникающие с одной стороны зуба $\sigma_{\text{раст}} \approx 134 \text{ M}\Pi a$. Эти напряжения меняются периодически, и имеет место пульсационный цикл изменения напряжений (рис. 2).

Рис. 2. Параметры пульсационного цикла нагружения

Как видно из рисунка, $K_{\min} = 0$, $K_P = K_{\max} = K_I$, $K_m = 0,5K_{\max} = 0,5K_I$. Коэффициент асимметрии цикла находят следующим образом:

$$R = \frac{K_{\min}}{K_{\max}} \, .$$

Чтобы рассчитать допустимый размер трещины, нужно приравнять КИН к порогу развития усталостных трещин K_{th} , который зависит от асимметрии цикла. В данном случае R = 0. Исходя из материала зубчатого колеса и коэффициента асимметрии цикла, примем $K_{th} = 7$ МПа \cdot м^{1/2}:

$$K_{\rm I} = 134\sqrt{3,14\cdot0,6\cdot10^3} \cdot (1,12-0,23\frac{0,6}{8} + 10,6\left(\frac{0,6}{8}\right)^2 - 21,7\left(\frac{0,6}{8}\right)^3 + 30,4\left(\frac{0,6}{8}\right)^4 \approx 6,7 \quad \text{M}\Pi a \cdot \text{M}^{1/2}.$$

Условие $K_I < K_{th}$ соблюдается, если продольная трещина будет глубиной менее 0,6 мм. Трещины меньшей глубины являются допустимыми и не влияют на дальнейшую работу зубчатого колеса. Трещина глубиной 0,6 мм — трещина пороговых размеров, которая подвержена медленному росту до критического размера, затем произойдет разрушение.

Теперь найдем критический размер трещины в основании зуба колеса, для этого будем нагружать трещину глубиной 0,6 мм ($\lambda = 0,075$) до тех пор, пока $\lambda \ge 0,7$, именно в этот момент наступит поломка зуба колеса.

П. Пэрис ввел соотношения, учитывающие локальный характер разрушения в вершине трещины. Особенностью соотношений явилось включение в них коэффициента интенсивности напряжений как меры всякого явления в вершине трещины, включая и скорость ее распространения. П. Пэрис объединил теорию роста трещин при усталости с механикой разрушения. При этом он сделал допущение, что нагружение по синусоидальному закону приводит к синусоидальному изменению поля напряжений у вершины трещины. Откуда следует, что скорость роста усталостной трещины в данном материале должна зависеть от размаха коэффициента интенсивности напряжений $\Delta K = K_{max} - K_{min}$ [6].

$$\frac{dl}{dN} = C(\Delta K)^m,$$

где параметр $C = 2,6 \cdot 10^{-14} \text{ м}^{-1} \cdot \text{М}\Pi a^{-4}$ для оценки средней скорости роста во всех сталях; параметр m = 2...10. Примем, что m = 7.

В проведенных исследованиях отмечено, что *m* и *C* не являются постоянными материала и зависят от ряда факторов, в частности, от условий нагружения и коэффициента асимметрии цикла.

Найдем скорость роста продольной трещины размером l = 0,6 мм. Так как это пульсационный цикл (R = 0), то $K_{\min} = 0$. Следовательно, размах коэффициента интенсивности напряжений $\Delta K = K_I = 6,7$ МПа · м^{1/2}:

$$\frac{dl}{dN} = 2,6 \cdot 10^{-14} (6,7)^7 = 1,65 \cdot 10^{-8}$$
 мм/цикл.

Теперь рассчитаем максимальное количество циклов нагружения до проявления внутренних эффектов.

Предположим, что наше работает 12 ч каждый день и цикл нагружения составляет 40 000 оборотов в день. Приращение трещины за шаг будем считать по формуле:

$$\frac{dl}{dN} \cdot N = \Delta l.$$

Задавшись шагом $\Delta N = 40\,000$, получим прирост трещины равной $\Delta l = 0,000664$ мм.

Имеем новые размеры трещины:

$$l + \Delta l = 0,6 + 0,000664 = 0,600664$$
 MM.

Для полученной трещины пересчитаем растягивающие напряжения, так как изменится момент сопротивления на изгиб и площадь опасного сечения, в связи с уменьшением толщины зуба в опасном сечении на Δl из-за роста трещины.

Также изменится КИН на Δl :

$$K_{\rm I} = \sigma_{\rm pacr} \sqrt{\pi (l + \Delta l)} \cdot (1, 12 - 0, 23\lambda + 10, 6\lambda^2 - 21, 7\lambda^3 + 30, 4\lambda^4).$$

После перерасчета скорости роста трещины для нового КИН получим снова приращение трещины (рис. 3).

Рис. 3. Диаграмма зависимости скорости роста трещины от КИН. Шкалы по осям логарифмические

Таким образом, нагружаем трещину шаг за шагом до тех пор, пока λ не станет равной 0,7, после этого считаем количество циклов нагружения. В данном случае количество циклов нагружения, необходимое для разрушения, накопится в течение 7 месяцев. С практической точки зрения этот результат можно трактовать следующим образом: в зубьях редуктора, проработавшего без отказов 7 месяцев, отсутствуют недопустимые трещиноподобные дефекты.

Подводя итоги, можно сделать следующие выводы:

• в зубчатых колесах всегда присутствуют микротрещины, но только некоторые из них являются причиной поломки зубьев в процессе эксплуатации;

• недопустимые трещины разрываются сразу или растут постепенно и приводят к поломке зуба через определенный период времени, который может быть рассчитан на основании уравнения Пэриса с использованием критериев механики разрушения;

• максимальное значение времени, через которое еще может проявиться недопустимая трещина, рассчитывается как время развития пограничной трещины до критических размеров. Это время следует считать периодом приработки зубчатых колес;

• на протяжении периода приработки рекомендуется осуществлять диагностический мониторинг технического состояния привода, что поможет избежать технических и экономических последствий вероятного отказа.

Литература

- [1] Захаров М.Н., Саркисов А.С., Шварц Т.Г. Коммерческая эффективность диагностики технического состояния систем МТ. *Газовая промышленность*, 2006, № 2, с. 62–65.
- [2] Захаров М.Н. *Прочностная надежность оборудования*. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2011. 123 с.
- [3] Булатова А.З., Захаров М.Н., Морозов Е.М. Оценка опасности расслоений в металле конструкций на основе диаграммы трещиностойкости. Заводская лаборатория. Диагностика материалов, 2010, № 3, с. 41–46.
- [4] Хеллан К. Введение в механику разрушения. Москва, Мир, 1988. 364 с.
- [5] Андриенко Л.А., Байков Б.А., Захаров М.Н. *Детали машин*. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2014. 465 с.
- [6] Пестриков В.М., Морозов Е.М. *Механика разрушения твердых тел: курс лекций*. Санкт-Петербург, Профессия, 2002. 320 с.

Коротких Екатерина Игоревна — магистрантка кафедры «Основы конструирования машин», учебный мастер 2-й категории, МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

Научный руководитель — М.Н. Захаров, д-р техн. наук, профессор, заведующий кафедрой «Основы конструирования машин», МГТУ им. Н.Э. Баумана, Москва, Российская Федерация.

ONE OF THE APPROACHES TO DETERMINING THE GEAR BURN-IN PERIOD

E.I. Korotkikh

katenka152@yandex.ru

Bauman Moscow State Technical University, Moscow, Russian Federation

Abstract	Keywords
The study suggests determining the burn-in period as the time of developing the initial production and tech- nological defects, presumably present in the metal of the wheel tooth, to critical dimensions. For specific condi- tions, we calculated the maximum permissible size of the crack in the base of the wheel tooth and the time	Gear, burn-in period, critical crack size, reduction gearbox diagnostics, wheel tooth failure
before the destruction of the tooth with a defect exceed-	© Bauman Moscow State Technical
ing this size.	University, 2017

References

- [1] Zakharov M.N., Sarkisov A.S., Shvarts T.G. commercial effectiveness of major pipeline technical condition diagnostics. *Gazovaya promyshlennost'*, 2006, no. 2, pp. 62–65.
- [2] Zakharov M.N. Prochnostnaya nadezhnost' oborudovaniya [Equipment strength reliability]. Moscow, Bauman Press, 2011. 123 p.
- [3] Bulatova A.Z., Zakharov M.N., Morozov E.M. Assessment of the risk of segregation in metal structures on the basis of crack resistance diagram. *Zavodskaya laboratoriya*. *Diag-nostika materialov*, 2010, no. 3, pp. 41–46.
- [4] Hellan K. Introduction to fracture mechanics. McGraw Hill, 1984. 302 p. (Russ. ed: Vvedenie v mekhaniku razrusheniya. Moscow, Mir publ., 1988. 364 p.)
- [5] Andrienko L.A., Baykov B.A., Zakharov M.N. Detali mashin [Machinery parts]. Moscow, Bauman Press, 2014. 465 p.
- [6] Pestrikov V.M., Morozov E.M. Mekhanika razrusheniya tverdykh tel: kurs lektsiy [Solid body fracture mechanics: lectures course]. Sankt-Petersburg, Professiya publ., 2002. 320 p.

Korotkikh E.I. — Master's Degree student, Department of Machine Construction Principles, second category training specialist, Bauman Moscow State Technical University, Moscow, Russian Federation.

Scientific advisor — M.N. Zakharov, Dr. Sc. (Eng.), Professor, Head of the Department of Machine Construction Principles, Bauman Moscow State Technical University, Moscow, Russian Federation.